
AD-A246 084

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
S FEB 20IM U AD

D

THESIS
A PROTOTYPE SEMANTIC INTEGRITY FRONT END
EXPERT SYSTEM FOR A RELATIONAL DATABASE

by

George Joseph Salitsky

September, 1991

Thesis Advisor: Magdi N. Kamel

Approved for public release; distribution is unlimited

92-03927

U nclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION l b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

37

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a, NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Progrdm E lement No Project No laO. NV Work unIt Acce-on

Number

11. TITLE (Include Security Classification)

A PROTOTYPE SEMANTIC INTEGRITY FRONT END EXPERT SYSTEM FOR A RELATIONAL DATABASE

12. PERSONAL AUTHOR(S) Salitsky,George J.

13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (year, month, day) IS PAGE COUNT

Master's Thesis IFrom To 11991, Sptember, 26 141l

16 SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Database integrity, Front end expert system, Prototype expert system, Semantic integrity.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Information is a critical resource in today's enterprises. Whether they are industrial, commercial, educational, or military, these organizations
maintain an ever increasing amount of information in databases. Ensuring the accuracy of information in a database is paramount o the
organization that maintain these databases. Many decisions are made from the information extracd from the database, and incorrect data will
lead to incorrect decision making. This thesis examines the feasibility of using expe-t systems for enforcing semantic integrity constraints to
relational databases. To accomplish this goal, the thesis develops a classification for semantic integrity constraints, applies it to develop rules for
the Navy's Naval Aircraft Flight Record application, and builds a front end expert system to enforce these rules dynamically. The expert system
enlorces integrity rules fr all maintenance operations(UPDATE, INSERT, and DELETE. I

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
M IoNC ASS F l)UNUMF ,,D 13 SAME AS PO , [3 L IC LIISRS tlnclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Magdi N. Kamel (408)646-2494 AS/KA

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

--- m m nunw~u m nanloulnmmInl u mm lll Imnl n l i nml • v ----- i

Approved for public release; distribution is unlimited.

A Prototype Semantic Integrity
Front End Expert System
for a Relational Database

by

George J. Salitsky
Lieutenant, United States Navy

B.S., University of Scranton

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September, 1991

Author: 66 eJ. Salitsky

Approved by:

Hemant Bhargava, Second Reader

p of"Ainistrative Scienc .

ABSTRACT

Information is a critical resource in today's enterprises.

Whether they are industrial, commercial, educational, or

military, these organizations maintain an ever increasing

amount of information in databases. Ensuring the accuracy of

informaL.ion in a database is paramount to the organizations

that maintain these databases. Many decisions are made from

the information extracted from the database, and incorrect

data will lead to incorrect decision making.

This thesis examines the feasibility of using expert

systems for enforcing semantic integrity constraints to

relational databases. To accomplish this goal, the thesis

develops a classification for semantic integrity constraints,

applies it to develop rules for the Navy's Naval Aircraft

Flight Record application, and builds a front end expert

system to enforce these rules dynamically. The expert system

enforces integrity rules for all maintenance operations

(UPDATE, INSERT, and DELETE.)

Accesion For

NTIS CRA&I

DBIC TAB
U' amiounced L
Jisttication

",../ B y

Dt ibitionl

Avjilat,,6*1y rc,des

iii I
- I

TABLE OF CONTENTS

I. INTRODUCTION.......................1

A. BACKGROUND.....................1

B. OBJECTIVES.....................2

C. RESEARCH QUESTIONS.................3

D. SCOPE........................4

E. ORGANIZATION OF THE STUDY..............5

II. CLASSIFICATION OF INTEGRITY CONSTRAINTS 6

A. Domain Integrity Constraints............7

B. Column Integrity Constraints............8

C. Entity Integrity Constraints...........10

D. Referential Integrity Constraints..........11

E. User Defined Integrity Constraints 12

III. NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DATABASE

DESIGN.......................16

A. BACKGROUND.....................16

B. AIRCRAFT FLIGHT RECORD OBJECTS..........20

1. ORGANIZATION Object..............21

2. AIRCRAFT Object.................21

3. FLIGHT Object.................21

4. AIRCREW Object..................22

5. AIRCREW FLIGHT Object.............22

6. LOGISTICS Object................23

iv

7. DEPARTURE Object 23

8. ARRIVAL Object 23

C. NAVAL AIRCRAFT FLIGHT RECORD SCHEMA 24

1. ORGANIZATION Relation 24

2. AIRCRAFT Relation 24

3. FLIGHT Relation 25

4. AIRCREW Relation 26

5. AIRCREW FLIGHT Relation 26

6. LOGISTICS Relation 27

7. DEPARTURE Relation 28

8. ARRIVAL Relation 28

D. INTEGRITY CONSTRAINTS 29

1. Domain Integrity Constraints 29

2. Column Integrity Constraints 29

3. Entity Integrity Constraints 30

4. Referential Integrity Constraints 30

5. User Defined Integrity Constraints 30

a. Intra-Attribute Constraints 30

b. Intra-Relation Constraints 31

IV. DESIGN AND IMPLEMENTATION OF THE FRONT END EXPERT

SYSTEM 33

A. INFERENCE ENGINE 33

B. APPLICATION DESIGN 35

1. Append 36

2. Update 37

3. Delete 38

v

V. CONCLUSIONS AND RECOMMENDATIONS 40

A. CONCLUSIONS 40

B. RECOMMENDATIONS 41

APPENDIX A: NAVAL AIRCRAFT FLIGHT RECORD OBJECT

DIAGRAMS 43

APPENDIX B: NAVAL AIRCRAFT FLIGHT RECORD OBJECT

SPECIFICATIONS 46

APPENDIX C: NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL

DIAGRAMS 48

APPENDIX D: SESSION WITH NAVAL AIRCRAFT FLIGHT RECORD

EXPERT SYSTEM 51

APPENDIX E: NAVAL AIRCRAFT FLIGHT RECORD RULE-BASE . 69

LIST OF REFERENCES 132

BIBLIOGRAPHY 133

INITIAL DISTRIFUTION LIST 134

vi

I. INTRODUCTION

A. BACKGROUND

Semantic integrity is concerned with ensuring that the

database is always in a correct state even though some users

or application programs may attempt to change it to an

incorrect state. Enforcing semantic integrity means shielding

the database against invalid UPDATES, INSERTS, dnd DELETIONS.

Traditionally, most integrity checks are performed by

application programs or by periodic auditing of the database.

Problems of relying on application programs for integrity

checks include:

* Application programs that modify the database could
corrupt the whole database. That is, integrity checking is
likely to be incomplete because the application programmer
may not be aware of the semantics of the complete
database.

" The criteria for integrity are buried in procedures and
are therefore hard to understand and control.

" Code to enforce the same integrity constraints occurs in
any number of applications; therefore. inconsistencies
could be introduced easily.

Problems of these types could be detected through the use

of periodic auditing. Periodic auditing, on the other hand,

causes problems because of the time lag in detecting errors.

These problems include:

* There is considerable difficulty in tracing the source of
an error and correcting it.

* The incorrect data may have been used to propagate other
errors within the database and ultimately lead to
incorrect decisions based on incorrect data.

Thus the prevention of inaccurate data into the database

rather than the repair of the database once the damage has

occurred is the preferred method. The enforcement of these

integrity rules should be the responsibility of the DBMS, but

DBMS vendors have failed to provide adequate integrity

features to ensure accurate data within the database. [Ref. 1:

p.109]

B. OBJECTIVES

This thesis suggests the use of a front-end expert system

to enforce semantic integrity features. This expert system

would oversee the update, insertion, and deletion operations,

monitoring for violations of integrity rules. Once a violation

had been identified, the systcm would take an appropriate

action. This appropriate action would mean rejecting the

operation and reporting the violation.

To understand how this will be accomplished, consider

Figure 1. The expert system has a set of integrity rules that

define what errors will be checked. These rules are stored in

a knowledge base, which the inference engine of the expert

system uses to enforce database integrity. The major advantage

of this approach is that the validation of all data is handled

by the expert system, instead of being left to the user or the

2

application program. Another important advantage is that all

the integrity rules are located in the expert system's

knowledge base. With the knowledge base acting as a central

library, each integrity rule is easily queried and can be

changed as needed.

DATA ENTRY PERSONNEL [Ruln

Figure 1.1 Front End Expert System

C. RESEARCH QUESTIONS

The Navy, through the use of the Naval Aircraft Flight

Record, collects data for the Individual Flight Activity

Reporting System(IFARS) . The IFARS is a data bank for

information that the Navy uses for safety analysis, budget

justification of hours flown, and pilot compliance of

established minimum standards. The accurate collection of

data enables Naval Aviation to justify its existence while

3

providing the means to make it inherently less dangerous. The

following research questions will be addressed:

" What are the integrity constraints to be enforced by a
front end expert system based on the Navy's Naval Aircraft
Flight Record, OPNAV 3710/4 and how will these constraints
be classified?

" What is the feasibility of using an expert system as a
front end in developing and enforcing these integrity
constraints in a relational database application such as
the Navy's Naval Aircraft Flight Record?

D. SCOPZ

This thesis develops a semantic integrity front end expert

system that monitors maintenance operations to a relational

database developed for the Navy's Naval Aircraft Flight

Record. It will address the issue of classification of

integrity constraints to provide a structure for the knowledge

base. It will also design a relational database representative

of the way the user perceives the data on the Naval Aircraft

Flight Record. Lastly it will design and implement a prototype

front end expert system to enforce the integrity constraints

developed, and maintain semantic integrity on the database.

This prototype will be limited in its' ability to capture all

data required by the Naval Aircraft Flight Record. It was not

feasible to include all data or integrity constraints related

to the data in the Naval Aircraft Flight Record due to the

time constraint on this thesis.

4

3. ORGANIZATION OF THE STUDY

The thesis is organized as follows. Chapter II provides a

classification of the integrity constraints that need to be

incorporated into the expert system. Chapter III addresses the

design of the relational database for the Naval Aircraft

Flight Record application and describes the integrity rules

that need to be enforced for this application. Chapter IV

describes the design and construction of the front end expert

system. Chapter V presents the conclusions of the research, as

well as the benefits, limitations, and weaknesses of using a

front end expert system.

5

II. CLASSIFICATION OF INTEGRITY CONSTRAINTS

An important goal of any database system is to model the

real world .ccurately, and in a manner consistent with the

user's perception of the data. The relational database model

is based on the abstraction that data is stored in two-

dimensional tables called relations. Each row in the table

represents a tuple and each column represents an attribute.

The entire table is equivalent to a file with all the

properties of that relation. One of the fundamental principles

of the relational database model is that relationships among

distinct relations are captured through common values. Certain

restrictions must be imposed on these relations to insure the

integrity of the data within the database and allow for

meaningful comparisons. The following is a list of integrity

constraints that must be incorporated into the relational

database model to guarantee these meaningful comparisons [Ref.

21.

" Domain Integrity Constraints
" Column Integrity Constraints
" Entity Integrity Constraints
" Referential Integrity Constraints
" User-Defined Integrity Constraints

Each type of constraint is detailed in the following sections.

6

A. Domain Integrity Constraints

The domain is the fundamental concept of the relational

database model. The domain is the set of all possible values

an attribute can have. It includes a physical description of:

" the data type

" range of values permitted for all columns within that
domain

" allowable comparison operators (e.g., greater than (>)
and less than (<))

and a semantic description (the function or purpose of the

variable). A pair of values can be meaningfully compared, if

and only if these values are drawn from a common domain.

Consider the Naval Aircraft Flight Record in Figure 2.1.

DOC# Document Number
SIDE# Aircraft Side Number
EXCD Exception Code
BUNO# Aircraft Serial Number
ORG Organization Code
MSNl Mission Code
HRSI Mission Hours
TOTFLT Total Flights
ENGI Engine 1 Hours
ENG2 Engine 2 Hours
ENG3 Engine 3 Hours
ENG4 Engine 4 Hours

DOC ZXCD SIDE BUNO ORG MSNI HRS1 TOTYLT ENGI ENG2 ZNG3 ENG4
001 C 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 8.4

Figure 2.1 Domain Integrity Constraint

If both SIDE# and TOTFLT were declared to be numeric data

type, a query to list all aircraft by SIDE#, where TOTFLT is

greater than SIDE# would be a valid query. A query of this

type would produce as much meaningful information as comparing

7

apples to oranges. Enforcing domain constraints ensures that

two fields being compared not only have the same data types

but also are semantically comparable. This feature safeguards

users from meaningless information which could result from

comparisons of values from different domains. Although special

cases do arise that require the comparison of different

domains, these should be exceptions and handled as such.

The use of domain constraints results in an integrated

relational database[Ref. 2:p.45]. An advantage of this

integration is logical value-comparisons. As can be imagined,

the domain concept is fundamental to the support of each of

the other integrity constraints that are mentioned. Domain

constraints are what hold the relational database together and

allow it to model the real world accurately and in conjunction

with the user's way of thinking.

Today's DBMSs unfortunately do not support the domain

concept. What they do support is basic data types(e.g.,

character, integer, float, calendar date, and clock times) and

the ability to define certain ranges on these data types.

B. Column Integrity Constraints

Column integrity constraints are a natural extension of

the domain concept. If the relational database supports the

domain concept, then it should be capable of declaring in

which domain the column belongs (inheriting the physical and

semantic constraints associated with that domain), and any

8

additional constraints that are to apply to the columns. Each

column name then becomes a combination of a role name and a

domain name, where the role name designates the purpose of the

column's use in a specified domain. The advantages are as

follows:

" The description of every column that belongs to a given
domain need only be declared once in the domain
declaration.

" Because a given domain need only be declared once, the
valid state of the database is ensured in future updates
to integrity constraints.

" Support for ensuring database values are semantically
comparable by checking to see if the columns belong to a
common domain.

" Column integrity constraints are facilitated.

The last advantage is very important. If the relational

database supports the domain concept, it has the ability to

detect column integrity violations. Therefore, users can

depend on the relational database to determine whether values

in two different columns are semantically comparable.

Column integrity constraints may include the following:

" An added range constraint that provides a more confined
range than in the domain declaration

" If missing values are allowed within a column

" Whether values must be distinct from each other within the
column (primary keys)

Consider once again the Naval Aircraft Flight Record in Figure

2.1. HRS1, ENGI, ENG2, ENG3, and ENG4 belong to the same

domain called Hours. The domain data type is a float type with

9

one decimal place. The range of values allowed is only

positive. Negative values are not feasible. The column

constraints for both HRS1 and ENG# are more restricted in that

the range of values allowed is only between 00.1 to 72.0.

Missing values are not allowed within the columns as long as

the Exception Code is not X. ENG# value must be equal to or

less than HRS1. This condition is specified to allow for

engines that are shut down during a flight. Although some of

these constraints within the example deal with other classes

of integrity constraints, the basic idea of column integrity

can be seen.

C. Entity Integrity Constraints

In order to understand Entity Integrity and Referential

Integrity, it is important to discuss primary and foreign

keys. Each row of a particular table in a relational database

contains a column which contains primary-key values that

uniquely identify and distinguish that row from every other

row in that table. The primary-key can be composite and formed

from more than one column. Everywhere else in the database

that there is a need to refer to that unique row, the same

value from the same domain is used but is referred to as a

foreign-key value. The column that the foreign-key value is

taken from is called the foreign key.

Entity Integrity implies that no component of a primary

key is allowed to have a missing value. The primary-key in the

10

relational database model is a compulsory feature. An example

of this is shown in Figure 2.2. The primary-key Document

Number is missing from both records which is a violation of

the Entity Integrity rule since it creates unidentified

objects within the database. From Figure 2.3 we can see that

duplicate primary-key values are prohibited, because of

basically the same consequences (loss of identity).

Also, no component of a foreign key is allowed to be

missing and inapplicable as opposed to missing and applicable.

This case requires additional attention in that Side Number

must adhere to referential integrity.

DOC EXCD SIDE BUNO ORG DSN1 URSi TOTFLT ENG1 ENG2 ENG3 ENG4
C 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2
C 052 152942 VP5 1A2 9.3 01 7.0 9.3 9.3 9.3

Figure 2.2 Entity Integrity Constraint(Missing)

DOC EXCD SIDE EURO ORG MSN1 HRS1 TOTYLT ENG1 ENG2 ZNG3 ENG4
001 C 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2
001 C 052 152942 VP5 1A2 9.3 01 7.0 9.3 9.3 9.3

Figure 2.3 Entity Integrity Constraint(Duplicate)

D. Referential Integrity Constraints

For each distinct foreign-key value in a relational

database, there must exist in the database an equal value of

a primary key from the same domain. If the foreign key is

composite, those components that are themselves foreign keys

must exist in the database as components of at least one

11

primary-key value drawn from the same domain. Consider the

relational diagram in Figure 2.4. Aircraft Side Number is the

primary-key value of the AIRCRAFT relation. Aircraft Side

Number is also a foreign-key in the FLIGHT relation. From the

relational diagram, FLIGHT must have one and only one Aircraft

Side Number per document number while the relation AIRCRAFT

can have one or more FLIGHTs associated with an Aircraft Side

Number.

AIRCRAFT

AIRCRAFT SIDE NUMBER 1ORGANIZATION CODE* I.

FLIGHT

DOCUMENT NUMBER AIRCRAFT SIDE NUMBER*. . (

Figure 2.4 Relational Diagram

The entry of Document Number 0003AAA into the Flight

relation in Figure 2.5 violates referential integrity because

the Side Number 045 is not a primary-key in the Aircraft

relation. Referential integrity can be thought of as inclusion

dependency in that the foreign key must be a subset of a

database in which it is the primary key.

Z. User Defined Integrity Constraints

Domain, column, entity, and referential integrity are the

building blocks of the relational database. User defined

12

integrity constraints are constraints that are peculiar to the

end-user or company. These constraints allow organization

practices and policy, or governmental legislation to be

reflected in the database delineated by the user. Consider the

Naval Aircraft Flight Record in Figure 2.6. The exception code

AIRCRAFT RELATION
SIDE# Aircraft Side Number
ORG Organization Code

SIDEt ORG
051 VP5
052 VP5
053 VP5

FLIGHT RELATION
DOCNUM Document Number
SIDE# Aircraft Side Number

DOCNUM SIDEI
0001AAA 052
0002AAA 051
0003AAA 045

Figure 2.5 Referential Integrity Constraint

DOC EXCD SIDE BUNO ORG MSN1 BRSI TOTFLT ENGI ENG2 ENG3 ENG4
001 X 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2

Figure 2.6 User Defined Integrity Constraint 1

X is used to document a canceled flight. A canceled flight is

one for which no flight time is obtained. Document 001 has

violated a user defined integrity rule because it has allowed

flight time to be documented for a canceled flight.

User defined constraints such as this, require that UPDATE

operations have an ordered sequence of events in order to

13

comply with all the integrity constraints defined for the

database. Examine the Naval Aircraft Flight Record in Figure

2.7. In an UPDATE operation on Document 001 the Exception Code

was changed to X. This resulted in the record change in the

database demonstrated in Figure 2.8. Not only did all flight

time need to be removed, the Mission Code needed to be changed

to reflect the user defined constraint that the 2nd position

of the Mission Code be N or the character 0 if the Exception

Code is an X.

DOC EXCD SIDE BUNO ORG MSN BRS1 TOTFLT ENG1 ENG2 ENG3 ENG4
001 X 052 152942 VP5 1A2 10.2 01 6.4 10.2 10.2 10.2

Figure 2.7 User Defined Integzity Constraint 2

DOC EXCD SIDE SUNO ORG XSNI BRSl TOTFLT ENGI ENG2 ENG3 ENG4
001 X 052 152942 VP5 1N2

Figure 2.8 User Defined Integrity Constraint 3

The intent of this chapter has been to develop the

framework for the expert system. Classifying the integrity

constraints allows for the building of rules according to

these constraints. In order for the expert system to function

properly, the integrity constraints must be transparent to the

user so that there is no reliance on voluntary action by the

user to maintain integrity within the database. In regard to

transparency, attempted violations of the integrity

constraints must be denied with an appropriate reason for

14

denial conveyed to the user. Also, any operations on the

database must be atomic in the sense that each operation must

be completed satisfactorily (satisfying all integrity

constraints) or denied and rolled back to its original state.

15

III. NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DATABASE DESIGN

As discussed in Chapter I, the thrust of this thesis is

the feasibility of using a front end expert system to enforce

semantic integrity constraints. This chapter discusses the

development of a relational database model and its associated

semantic integrity rules that will serve as the case study for

the front end expert system.

A. BACKGROUND

The relational database model developed in this chapter is

based on the Naval Aircraft Flight Record(OPNAV 3710/4), shown

in Figure 3.1. This record serves as the sole source of all

naval aircraft flight data and is applicable in specific areas

to aircraft simulators. The OPNAV 3710/4 record is prepared

for each attempt at flight of naval aircraft or training

evolution for simulators. The types of data collected are:

* A statistical description of the flight pertaining to the
aircraft and crew members

" A record of all logistic actions performed during the
flight

" A record of weapons proficiency

" A record of training areas utilized and other
miscellaneous data

The Operations Department within the aircraft squadron is

responsible for verifying the accuracy and completeness of

16

I- - r...r _ _ _ - - - -j

ItI 1 1 2 It ' , -It Vi -- -tl

I '- - -- I - -. -- { L . :

C-3-

,"~ ,_ , .l: _:. z._

- -- - - - - -- " - .-- - -1- . i -

" ' ' ' . . . - i- 3
", ~ -- - - -

o-* , _ -3, -1 ,

z ELL---3

0IGURu 3.1 Naval. Aircraft Fih Rcord (OjPKV3"/4)

1"7

naval aircraft flight records submitted for data processing as

well as verifying the daily audit reports, and coordinating

the correction of errors with the maintenance analyst. The

Maintenance Analyst is the NAVFLIRS coordinator who is

responsible for accomplishing the daily submission of

completed naval aircraft flight records for processing,

distributing daily audit and monthly reports to the operations

and maintenance departments, and coordinating error

corrections with operation and maintenance control. Completed

naval aircraft flight records are then forwarded to the Naval

Safety Center (NAVSAFCEN) for processing. A Monthly Individual

Flight Activity Report(MIFAR), shown in Figure 3.2, is

produced by the NAVFLIRS system and forwarded to the aviator

by NAVSAFCEN. The MIFAR contains all individual activity for

that month, excluding those records appearing on the error

reports processed by NAVSAFCEN. This includes a summarization

by aircraft bureau number and by the flight times (First Pilot

Time(FPT), Co-Pilot Time(CPT), and Special Crew Time(SCT)),

including instrument (Actual Instrument Time(ACT) and

Simulated Instrument Time(SIM)), and night times for that

month. The MIFAR also contains a weapons proficiency summary,

a miscellaneous data section, and a fiscal year to date

summary indicating what is on record in the NAVFLIRS system.

In addition to producing the MIFAR, the NAVSAFCEN is the

collection and maintenance activity for the IFARS data bank.

The IFARS is the primary source of individual flight data,

18

0

Ow 2

U
a z

iz

;0Z ;
s zF

w-. -

aU U -U' U le3U8

* F U -U U EU - - X

toy 0, 4-

9W 19

including those flights flown in authorized simulators. The

reporting vehicle for IFARS data is the Naval Aircraft Flight

Record OPNAV 3710/4. The IFARS data bank provides valuable

exposure data for flight safety analysis and also provides

data for other uses such as budget justification, past and

future program evaluation, and pilot compliance with

established minimum standards. Commander of Naval Military

Personnel Command(COMNAVMILPERSCOM) annually convenes a flight

board to review pilot flight activity by looking at the IFARS

data bank against the annual flying requirements as set forth

in OPNAVINST 3710. Each year, the Naval Safety Center mails to

reporting individuals their flight data report for the

previous fiscal year. IFARS data is applicable to naval

aviators, student naval aviators, naval flight officers,

aviation pilots flying naval aircraft, naval flight surgeons,

and aerospace physiologists/psychologists in a DIFOPS(duty in

a flying status for an officer involving operational or

training flights) or DIFDEN(duty in a flying status for an

officer not involving flying) status on active duty or

participating in the Navy or Marine reserve program. [Ref.

3:pp.10(1-4)]

B. AIRCRAFT FLIGHT RECORD OBJECTS

In order to develop a relational schema for the Naval

Flight Data application, a series of objects were developed to

capture the data requirements for the Naval Aircraft Flight

20

Record, OPNAV 3710/4. An object is a named collection of

properties that sufficiently describes an entity in the user's

work environment [Ref. 4:p.90]. The objects developed for this

application include: ORGANIZATION, AIRCRAFT, AIRCREW, FLIGHT,

AIRCREW-FLIGHT, LOGISTICS, ARRIVAL, DEPARTURE. In the

following sections, each object is described in more detail.

The complete Object Diagrams are shown in Appendix A.

1. ORGANIZATION Object

This object represents a generic naval aircraft

squadron. It is identified by an Organization Code and

includes properties such as Data Processing Code, Organization

Short Name, Support Code, Departure Time Zone, Departure IACO,

Cats/Jato, Airlift Mission, Payload Configuration Data, and

Training Codes. Typically an organization will have several

aircraft.

2. AIRCRAFT Object

This compound object represents a generic naval

aircraft. It can be identified by the Aircraft Side Number or

Buno/Serial Number and includes properties such as Type

Equipment Code, and Number of Engines. Typically an aircraft

is assigned to exactly one organization and is used for many

flights.

3. FLIGHT Object

This compound object represents a generic naval

aircraft flight. It is identified by the Document Number and

21

includes properties such as Exception Code, Total Flights,

Ship/Field Operations Code, Catapult/Jato Launches, Airlift

Mission Number, Number of Hoists, and Remarks. Mission Code,

Mission Hours, Engine Number and Engine Hours are multi-valued

properties and can contain more than single values. A flight

can only involve one aircraft but may typically involve many

aircrew members while carrying out many logistic missions.

4. AIRCREW Object

This object represents a generic naval aircrew member.

It is identified by the Social Security Number and includes

properties such as Last Name, First Initial, Service, Grade,

Organization, Natops Qualification Expiration Date, Medical

Expiration Date, Instrument Qualification Expiration Date,

Water Qualification Expiration Date, Physiology Qualification

Expiration Date, Assigned Syllabus, Syllabus Status Code,

Aircrew Status Code, and Exception Code. Typically an aircrew

member will be involved in many aircrew flights.

5. AIRCREW FLIGHT Object

This association object represents a generic naval

aircrew flight. It is identified by the combination of

properties, Document Number and Social Security Number. The

justification for making AIRCREW FLIGHT an association object

instead of a compound object stems from the fact that AIRCREW

FLIGHT is perceived as an independent object. Independent,

because it contains non-key data and documents a relation

22

between FLIGHT and AIRCREW. Its properties include First Pilot

Time, Co-Pilot Time, Special Crew Time, Actual Instrument

Time, Simulated Instrument Time, and Night Time. Multi-valued

properties include Type Landings, Number Landings, Type

Approach, Number Approaches, Training Code, Training Area,

Training Hours, Ordnance Code, Delivery Code, Runs, Score,

Miscellaneous Data Code and Miscellaneous Data.

6. LOGISTICS Object

This object represents a generic naval logistic flight

leg. It is a composite object that is identified by the

composite key of Document Number and Leg Number and contains

the property Time Zone. Each logistic leg will be associated

with a flight and have one arrival and departure.

7. DEPARTUREZ Object

This composite object represents a generic naval

flight departure leg. It is identified by Document Number, Leg

Number, and Departure Time. Its properties include Departure

Date, Departure ICAO, Confirmed Payload Cargo, Opportune

Payload Cargo, Maximum Passenger, and Maximum Cargo. Delay

Departure Code, Delay Departure Hours, Passenger Priority, and

Opportune Payload Code are multi-valued properties. Each

departure will be associated with one logistic leg.

S. ARRIVAL Object

This composite object represents a generic naval

flight arrival leg. It is identified by Document Number, Leg

23

Number, and Arrival Time. Its properties include Arrival Date,

Arrival ICAO, System Status, and Distance. Delay Arrival Code

and Delay Arrival Hours are multi-valued properties. Each

arrival will be associated with one logistic leg.

C. NAVAL AIRCRAFT FLIGHT RECORD SCHEMA

In this section we perform a logical database design by

transforming the objects developed in the previous section

into a relational schema. The output from this phase is a set

of relations, relation definitions, relationships between

relations, and constraints on these relationships. In the

following sections, we discuss the main relations and

relationships of the schema. Refer to the Object Diagrams in

Appendix A and the Relational Diagrams in Appendix C for the

following discussion.

1. ORGANIZATION Relation

This relation is transformed from the object

ORGANIZATION. It is identified by the attribute organization

code. This relation is associated in a one to many optional

relationship with the AIRCRAFT relation. In other words, a

record of this relation may be associated with one or more

records of the AIRCRAFT relation.

2. AIRCRAFT Relation

This relation is transformed from the compound object

AIRCRAFT. It is identified by the attribute aircraft side

number. It contains the foreign attribute of organization code

24

from the ORGANIZATION relation. Whereas the ORGANIZATION did

not need any instances of aircraft, the AIRCRAFT has a

mandatory relationship with the ORGANIZATION. This represents

a many to one mandatory relationship. On the other hand, the

AIRCRAFT relation is associated in a one to many optional

relation with the FLIGHT relation. As with the ORGANIZATION

relation, a record in this relation may be associated with one

or more records of the FLIGHT relation.

3. FLIGHT Relation

This relation is transformed from the compound object

FLIGHT. It is identified by the attribute document side

number. It contains the foreign attribute aircraft side number

from the AIRCRAFT relation. FLIGHT is represented by a many to

one mandatory relationship with AIRCRAFT, indicating that any

records from this relation must be associated with one record

of the parent AIRCRAFT. The object FLIGHT is also a composite

object meaning that it contains repeating groups of non object

properties. Each of these groups is represented by a relation

in the database. The first relation, MISSION, is identified by

the composite key document number and mission code. It is

represented as a many to one mandatory relationship indicating

the possibility of many mission records, each associated with

a FLIGHT record. The second relation, ENGINE, is identified by

document number and engine number. It is also represented as

a many to one mandatory relationship, indicating as many

25

records as the aircraft has engines.

The relation FLIGHT also serves as the parent to both

the relations AIRCREW FLIGHT and LOGISTICS. In both instances,

the relation is associated in a one to many optional

relationship. Each record of FLIGHT may be associated with one

or more records of both the AIRCREW FLIGHT and LOGISTICS

relations.

4. AIRCREW Relation

This relation is transformed from the object AIRCREW.

It is identified by the attribute ssn (Social Security

Number). This relation is associated in a one to many optional

relationship with the AIRCREW FLIGHT relation. In other words,

a record of this relation may be associated with one or more

records of the AIRCREW FLIGHT relation.

5. AIRCRZW FLIGHT Relation

This relation is transformed from the association

object AIRCREW FLIGHT representing the relationship between

FLIGHT and AIRCREW. The relation is identified by the

composite properties of document number and ssn, each of which

are the keys of the parent relations. Although this object

does not contain a key of its own, it does contain non-key

data that indicate details of a specific flight and represents

a real object in the user's environment. The non-key data are

represented by multiple repeating groups. Each of these

repeating groups is represented by a relation with a one to

26

many optional relationship with AIRCREW FLIGHT. The first

relation, LANDING, is identified by document number, ssn, and

type landing. The second relation, APPROACH, is identified by

document number, ssn, and type approach. The third relation,

TRAINING, is identified by document number, ssn, and training

code. The fourth relation, TRAINING AREA, is identified by

document number, ssn, and training area. The fifth relation,

WEAPONS, is identified by document number, ssn, and delivery

number. The final relation within the association object is

MISCELLANEOUS, identified by document number, ssn, and

miscellaneous data code.

6. LOGISTICS Relation

This relation is transformed from the composite object

LOGISTICS. It is identified by the composite properties

document number and leg number. It is associated with FLIGHT

in a many to one mandatory relationship indicating that any

records in this relation must be associated with a record in

the FLIGHT relation. The relation is also associated with the

relations DEPARTURE and ARRIVAL as a one to one mandatory

relation. Both relations DEPARTURE and ARRIVAL contain records

that describe different aspects of the same relation LOGISTIC.

Although these relations may be combined into one, a better

user understanding of the relational database design and

better database performance can be achieved by the separating

the two.

27

7. DEPARTURE Relation

This relation is transformed from the composite object

DEPARTURE. It is identified by the composite properties

document number, leg number, and departure time. As was

mentioned previously, it is represented as a one to one

mandatory relationship with the LOGISTIC relation. It also

contains multiple repeating groups represented by the

following relations which maintain a one to many optional

relationships with DEPARTURE. The first relation, PASSENGER,

is identified by document number, leg number, and passenger

priority. The second relation, PAYLOAD, is identified by

document number, leg number, and opportune payload code. The

last relation, DEPARTURE DELAY, is identified by document

number, leg number, and delay departure code.

8. ARRIVAL Relation

This relation is transformed from the composite object

ARRIVAL. It is identified by the composite properties document

number, leg number, and arrival time. Once again, it is

represented as a one to one mandatory relationship with the

LOGISTIC relation. It is also represented by a relation,

ARRIVAL DELAY, representing a one to many optional

relationship. The relation is identified by document number,

leg number, and delay arrival code.

28

D. INTEGRITY CONSTRAINTS

In this section, we present the semantic integrity rules

that need to be maintained for the relational schema developed

in the previous section [Ref. 51. Due to the sheer size of the

database design, it was decided to narrow the focus of the

front end expert system by limiting the integrity constraints

to the FLIGHT relation. The narrowed focus still allowed the

system to address all the classes of integrity constraints

developed in Chapter II.

1. Domain Integrity Constraints

The domain constraints enforced in this application

are presented in Appendix B.

2. Column Integrity Constraints

The column constraints as discussed previously in

Chapter II can be thought of as a subset of the domain

integrity constraints. The following column integrity

constraints are enforced in the front end expert system:

" Exception Code must be C, D, X, or BLANK

* Mission Code (n) where n = 1 must be in the range of 1-6
or BLANK

" Mission Code (n) where n > 1 must be in the range of 1-5
or BLANK

" Mission Hours (n) where n = I must be in the range of 0.1
to 72.0 or BLANK

* Mission Hours (n) where n > 1 must be in the range of 0.1
to (72.0 - Sum of Mission Hours) or BLANK

" Total Flight must be in the range of 1-99 or BLANK

29

* Ship/Field Operations must be A, B, 1, 2, or BLANK

" Catapult/Jato Launches must be in the range of 1-99 or
BLANK

" Engine Hours (n, n+l, n+2,...) must be in the range of 0.1
to 72.0 or BLANK

" Number of Hoists must be in the range of 1-99 or BLANK

3. Entity Integrity Constraints

The following entity integrity constraints are

enforced by the front end expert system:

" Document Number cannot be missing or duplicated

" Aircraft Side Number cannot be missing

" Mission Code (n) where n = I cannot be missing

4. Referential Integrity Constraints

The following referential integrity constraints are

enforced by the front end expert system:

" Aircraft Side Number must be validated against the
AIRCRAFT object for the purpose of recording a valid
Buno/Serial number and ensuring the correct number of
engines are recorded for flight time

" Document Number for the composite objects is the same as
the FLIGHT document number

5. User Defined Integrity Constraints

The following user defined integrity constraints are

enforced by the front end expert system.

a. Intra-Attribute Constraints

These user defined integrity constraints apply to

the relationships within an attribute:

• Mission Code (n), Position 2, when n=l or >1, must be R or
in the range of A-I or N-P if Position 1 is a 1

30

" Mission Code (n), Position 2, when n=l or >1,must be in
the range of J-R if Position 1 is a 2

" Mission Code (n), Position 2, when n=l must be 0 or in the
range of S-Z if Position 1 is 3-6 or Position Code is 3-5
when n>1

" Mission Code (n), Position 2, when n=1 must be 0 or N if
Exception Code is X

" Mission Code (n), Position 1,2, and 3 when n>1 must be
BLANK when Exception Code is X

" Mission Code (n), Position 1,2, and 3 when n>2 must be
BLANK when Mission Code (n-i) is BLANK

b. Intra-Relation Constraints

These user defined integrity constraints apply to

the relationships within a relation:

" Mission Hours (n), when n=l or >1, must be Blank if
Exception Code is X

" The sum of Mission Hours (n+(n+l)+(n+2)+...) must not
exceed 72.0 hours

" Mission Hours (n), when n>l, must be BLANK if Mission Code
(n) is BLANK

* Total Flight must be BLANK if Exception Code is X

* Total Flight must meet its column integrity constraints if
the Exception Code is not X

" Ship/Field Operations Code must be BLANK if Exception Code
is X

" Ship/Field Operations Code must meet its column integrity
constraints if the Exception Code is not X

" Catapult/Jato Launches must be BLANK if Exception Code is
X

" Catapult/Jato Launches must meet its column integrity
constraints if the Exception Code is not X

" Airlift Mission Number must be BLANK if Exception Code is
X

31

" Airlift Mission Number must meet its column integrity
constraints if the Exception Code is not X

* Engine Hours (n,n+l,n+2,...) must be BLANK if Exception
Code is X

" Engine Hours (n,n+l,n+2,...) must be in the range of 0.1
to Mission Hours (n,n+l,n+2,...) if the Exception Code is
not X

" Number of Hoists must be BLANK if Exception Code is X

" Number of Hoists must meet its column integrity
constraints if the Exception Code is not X

In the next chapter, the design and implementation of

a front end expert system that enforces the above integrity

rules is described.

32

IV. DESIGN AND IMPLEMENTATION OF THE FRONT END EXPERT
SYSTEM

Expert systems are programs that respond to information

very much like a human expert in a well-defined area(the

program's domain). They capture and distribute knowledge to

the non-experts and general practitioners in specific

application areas where:

" Difference in performance is largely based on expert
knowledge.

" This knowledge is experienced-based.

" The knowledge can be stated as "If.. .then" rules
[Ref. 6:p.17]

An important aspect of some expert systems is the ability to

capture knowledge and then record it as a set of rules in a

knowledge base. Expert system shells such as VP-Expert use an

inference engine that interacts with the user and navigates

through the knowledge base to deliver this knowledge.

A. INFERENCE ENGINE

The search strategy or problem solving method used in this

thesis application and supported by VP-Expert is called

"backward-chaining." The inference engine starts by

identifying a target variable and then moves through a

sequence of rules until it finds a value that can be assigned

to that target variable. Consider the following example in

33

Figure 4.1.

In this example, any of the three rules can assign a value

to TOTFLTVALID. If the value for EXCD is not known then the

inference engine looks for the rule assigning a value to EXCD

FIND TOTFLTVALID; -The target variable is
identified as
TOTALFLIGHTVALID

RULE USERDEFINEDCONSTRAINTTOTFLT_1
IF

EXCD = X -If Exception Code is
equal to the value "X"

THEN
TOTFLT = (BLANK) -Then assign a null
TOTFLTVALID = TRUE; value to TOTFLT and

assign TRUE to
TOTALVALID

RULE USERDEFINEDCONSTRAINT TOTFLT_2
IF

EXCD <> X AND -If Exception Code is
TOTFLT >- 1 AND not equal "X" and the
TOTFLT <= 99 value assigned to

TOTFLT is greater than
0 and less than 100

THEN
TOTFLTVALID = TRUE; -Then assign TRUE to

TOTFLTVALID

RULE USERDEFINEDCONSTRAINTTOTFLT_3
IF

EXCD <> X AND -If Exception Code is
TOTFLT < 1 OR not equal "X" and the
TOTFLT > 99 value assigned to

TOTFLT is less than
1 or greater than 99

THEN
TOTFLT VALID = FALSE; -Then assign FALSE to

TOTFLTVALID

Figure 4.1 "Backward" Chaining

in its conclusion. If the value assigned to EXCD is

X,USERDEFINEDCONSTRAINT TOTFLT_1 is fired and the value for

34

TOTFLT becomes null. On the other hand if the value of EXCD is

not equal to X, then the first rule is passed and the second

rule is applied. Once again, if the value for TOTFLT is not

known, then the inference engine must look for a rule that

assigns a value to TOTFLT. This pattern continues if other

variables within the rule were not known. Once all the values

are known, the inference engine retraces its steps and tests

the original rule. In the example above if TOTFLT is 2, then

rule USERDEFINEDCONSTRAINTTOTFLT_2 is fired and

TOTFLTVALID is assigned TRUE.

B. APPLICATION DESIGN

The front end expert system is the user's interface with

the database. It is designed to perform maintenance on the

database to include append, update, and delete operations.

While the rules have been defined in the last chapter, this

section deals with the logic needed in the application. Which

questions are asked initially? Which answers lead to other

questions? In the following sections we discuss each of the

maintenance operations.

NOTE: While all the maintenance operations require access to

all objects of the database design, no maintenance operations

are allowed on the following objects; ORGANIZATION, AIRCRAFT,

and AIRCREW. The security of these objects require that they

be protected from either malicious or accidental destruction

or corruption.

35

1. Append

After the user selects APPEND RECORD from the main

menu, the expert system uses a system-generated dialogue with

the user to generate a record for the FLIGHT object. Each

attribute is checked against the integrity constraints for

that specific attribute by the inference engine. Each

attribute that meets the constraints imposed by the expert

system is stored until the end of the transaction. If the

attribute cannot meet the integrity constraints of the

knowledge base, the system continues to ask the user for the

attribute and offers assistance as to a valid attribute the

system will accept. This feature disallows an invalid

attribute and prevents the invalid record from being added to

the database, since the user cannot continue until a valid

attribute is entered.

The logical ordering of questions follow from the

Naval Aircraft Flight Record(OPNAV 3710/4)as shown in Figure

3.1. Some of the answers that lead to other questions include

the following:

" Exception Code = X

" Mission Code 1/Position 1 = 6

" Mission Code 2 = Unknown

These answers affect the logical ordering of questions to be

asked. The rules from Figure 4.1 used earlier in finding

TOTFLTVALID show this ordering. If the Exception Code is

36

equal to X then TOTFLT is set to null. This made the attribute

TOTFLT appear to be overlooked, when in fact the rule

USERDEFINEDCONSTRAINTTOTFLT_1 fired and assigned (BLANK) to

the attribute TOTFLT.

At the end of the append operation, all values

assigned to the attributes are committed to the database. If

at any time during the transaction the user quits, or the

append operation is terminated, the attribute values are

effectively rolled back to their previous values.

2. Update

This maintenance operation is probably the most

critical of all the operations. Questions, that are asked in

a logical order in the append operation, may not have been

asked when updating the value of one attribute. The ability to

change attribute values of a record requires a clear

understanding of the semantics of the whole database.

The selection of the UPDATE RECORD from the main menu

provides the user with another menu showing all possible Naval

Aircraft Flight Records within the database to update. After

selection of a record, the user is then presented with a sub-

menu of all possible attributes to update. The changing of one

attribute may not only fire the rule for that attribute but

may also fire multiple other rules for attributes that are

logically affected by the update of that attribute. For

example, a Naval Aircraft Flight Record with the attribute

37

Exception Code equal to X designates a canceled flight and,

therefore, cannot contain flight data. In the event that the

canceled flight was later flown, an update to the record

should ensure that all the attributes of a flight are updated.

Because of this, each unique update operation fires a separate

rule. This presents a logical ordering of questions, which

preserves the semantic integrity of the record in conjunction

with the attribute updated. Figure 4.2 is an example of one of

many update rules searched to update Mission Code 1. The

inference engine searches the knowledge base after a valid

Mission Code 1 has been entered to provide the logic that is

needed to preserve the integrity of the record. This rule

could only fire after Mission Code 1 met the Integrity

Constraints defined in Chapter III. No attributes are

committed to the database until all attributes meet all

integrity constraints as determined by the inference engine.

3. Delete

The final maintenance operation deals with purging the

database of unwanted records. This requires a cascaded delete

operation. This operation deletes the designated FLIGHT record

and all optional records related to the deleted FLIGHT record.

These relations are shown in the relational schema of Appendix

C. This function is based on referential integrity and the

associated concept of inclusion dependency as discussed in

Chapter II. Because this operation is potentially destructive,

38

a confirmation message that explains the consequences of the

process is displayed, and the user is given the opportunity to

cancel the delete operation. This operation doesn't mark the

RULE MISSIONCODE_1_RULE_2
IF
FIELD TO UPDATE = MISSIONCODE_1 AND -Field to Update -
MSN1 1 -76 AND Mission Code 1 and
EXCD <> X -Mission Code 1

Position 1 = 6 and
-Exception Code = "X"

THEN
MISSIONCODEl RULE = USED -Assigns USED to
TOTAL = 0 target variable
FIND HRSl VALID -Assigns 0 to TOTAL
MSN2 1 - (BLANK) for Total Hours flown
MSN2 2 - (BLANK) -Looks for HRSI VALID
MSN2 3 - (BLANK) -Assigns null to
HRS2-= (BLANK) MSN2 1
MSN3 1 - (BLANK) -Assigns null to
MSN3 2 - (BLANK) MSN2 2
MSN3-3 = (BLANK) -Assigns null to
HRS3 = (BLANK) MSN2 3
FIND MISSIONIENGHRSVALID -Assigns null to
PUT FLIGHT HRS2
CLOSE FLIGHT; -Assigns null to

MSN3_1
-Assigns null to
MSN3 2
-Assigns null to
MSN3_3
-Assigns null to
HRS 3
-Looks for
MISSION1 ENGHRS VALID
-Commits attributes to
database
-Closes database

Figure 4.2 Update Operation Mission Code 1

record for deletion, instead it assigns an unknown value

(BLANK) to each attribute of the record and then commits these

values to the associated relations.

39

V. CONCLUSIONS AND RECONKENDATIONS

A. CONCLUSIONS

This thesis has addressed the issue of dynamic enforcement

of integrity constraints in a relational database through the

use of a front end expert system. It has also addressed the

classification of integrity constraints as a framework for

designing and building the front end expert system. The

development of a front end expert system for the Navy's Naval

Aircraft Flight Record served as the vehicle for demonstrating

the feasibility of this concept in a well-defined, structured

area.

Although limited in functionality, the Naval Aircraft

Flight Record front end expert system was successful in

maintaining semantic integrity for any given maintenance

operation(insertion, deletion, and update.) Because of the

atomic nature of all maintenance operations, the integrity of

the database is guaranteed at all times. A separate validation

program is, therefore, not required to audit the database

periodically.

The use of an expert shell with an If.. .Then construct

proved to be a viable method to test and implement the

integrity constraints developed. The ability to store these

rules in one central repository (knowledge base) was the most

40

significant benefit of using an expert shell. Any maintenance

to the program itself was made easier by the ability of the

user to ask why a particular response was obtained. This

allowed for query of the appropriate rule and examination of

the constraints imposed, therefore simplifying program

maintenance.

The expert shell(VP-Expert), while user friendly, proved

to be inefficient in building and supporting the atomic nature

of the maintenance operations and the integrity constraints.

VP-Expert was not designed to access a database efficiently.

The limitation of single record access commands, such as GET

and PUT, severely inhibits the performance of the shell in any

query operations on medium to large databases.

The validity of using an expert system as a front end to

check potential violations of one or more integrity

constraints was proved. Naturally, the correctness of all

values in the database could not be guaranteed. Any semantic

integrity system could only ensure that the data in the

database meet the integrity constraints defined in the system.

B. RZCOSOUNDATIONS

Initially, this researcher attempted to use an expert

shell other than VP-Expert to develop the front end system. A

Structured Query Language Interface (VP-Expert/SQL) was the

first choice. It was hoped that using this system would

provide a powerful tool for the enforcement of integrity

41

constraints within a relational database. However, this

software proved to be unstable and was recently withdrawn,

along with all technical support. This was unfortunate, but

SQL should still be considered a feasible tool for follow-up

research in this area. SQL would enable subqueries and join

operations and eliminate many of the inefficiencies inherent

to the system (i.e., loops, nested loops, see Appendix E)

The prototype front end expert system developed in this

thesis resulted in a knowledge base of approximately 150

rules. If the number of rules increase, the opportunity for

redundant and possibly conflicting rules would multiply. This

would inhibit the process of revalidating the system after

making changes to the knowledge base. The importance of

checking the knowledge base becomes even greater as this

happens.

Other follow-up research may include the feasibility of

using an object oriented database in providing semantic

integrity. Object oriented languages provide for the notion of

objects, classes, and inheritance. As opposed to tuples in the

relational model, objects have an identity which is

independent of their value. This characteristic is central to

the domain concept and should enhance this approach to enforce

integrity.

42

APPENDIX A

NAVAL AIRCRAFT FLIGHT RECORD OBJECT DIAGRAMS

E I

c E

E 0
111lIlidi d

zEill 3
0 2

z
0

C z

43

CL I-

LL

i

2 LL

fill I

44

c-

49 O.

45

APPENDIX B

NAVAL AIRCRAFT FLIGHT RECORD OBJECT SPECIFICATIONS

Object Definitions

FLIGHT OBJECT
document number; docnum
aircraft side number; sidenum
exception code; excd
mission code; msn MV
mission hours; hours MV
total flights; totflt
operations code; ops
catapult/jato; cj
airlift mission number; misnum
engine number; engnum MV
engine hours; hours MV
number of hoists; numhoists
remarks; remarks
AIRCRAFT; AIRCRAFT object; SUBSET [aircraft side number]
AIRCREW FLIGHT; AIRCREW FLIGHT object, MV
LOGISTICS; LOGISTICS object; MV

Domain Definitions

docnum;
Text 7
Unique number for organization's Naval Flight Record

sidenum;
Numeric 5
Unique number of an organizations aircraft

excd;
Text 1
Code to record other than routine flight

msn;
Text 3, mask FGS,

where F is the Flight Purpose Code - numeric
G is the General Purpose Code - alpha

S is the Specific Purpose Code - numeric
Unique mission code for a specific flight

hours;
Numeric 3, mask 99.9
Hours dedicated to performance of mission

totflt;
Numeric 2
Total number of flights

o~s;
Text 1
Code for ship/shore operational scenario

46

Numeric 1
Total number of catapult/jet assisted takeoff launches

misnum;
Text 9, mask ORGDATENN,

Where ORG is the organization code - Text
DATE is the julian date - numeric
NN is 01-99 sequentially assigned

enanum;
Numeric 1
Unique engine number

numhoists;
Numeric 2
Total number of hoists on a flight

remarks;
Text 15
Used as needed

47

APPENDIX C

NAVAL AIRCRAFT FLIGHT RECORD RELATIONAL DIAGRAMS

EE

48

E

0

w

49

~i I

50

APPENDIX D
SESSION WITH NAVAL AIRCRAFT FLIGHT RECORD EXPERT SYSTEM

41)

4.)

apa

4.-

E-4 P r- *

9 8)

x0
xh~ 0

E 0 E-4)l

>*.. H 0
EE-4 0 W .1

U4)

&4 0 E-4 W-A

pq 4J

U

0
E-1 0

N

51

rz

0 U) 0

144)

E41 0M H-4 14

*1-)
0 ~ H

14 U 4 U :64

0 H- OHE- HHE4 1

1 IE-4 HE4 0L 1

W4 E- I
E-0 H uR

Ih04 x 020

z :) 04 1
0 p 4Mp)

m z pq pa 4J
O 0Om E-

E- E- E4H H
z~U z n zU)

0U)m '
0 0 U)v

E-4 X 4J
h1O W4 0 U U

M H H w t

HOnHH 0w N w

to ca PQ pao0
04U E4 ZE4O I4 1 :ra Wf) Ir4 14

NC' >4I N4 >4O 0 4O 4.)

52

E1 E-4 E1
*M

z0 0 0 0i

0 0 0

o 4 0 w 94

hi 0 E-4 P o
z 04 Em

A 0 i Ai H

Ek II IQ Pq 0

A4 0 N A H

o q 4 E- 0 EA E-4 h0
W4 H4 H Htj

0 i 0 m N.4 w14p (

0) 0 0) hi hi
hi 0 940 10p

o ~~ 0 ~i @

H- pq H) 4

W E- 0O tri 0
x 0 ~ ' x M z t

H -hi pa H

14- to41

E- P E-) E-4) E-1 E-

hi 0

14 14 14 r- 1PQ4 1 4Q 4

53

z

H

0

u

0
Hq

E-

C44

0 4 04

0 0 0 4

H H H-

E4 E400 0 E-1
Hz~ OH U

01

104.

0 M C

HE HZ 00

0'-4 E'-4 ~
H H H..

w) 0) Pa0 0~)

H- 0 E H 0 H i-I

H 0HE4 Z04

m p WE- m' N4 $4
'- 0 90O 0 U

pq 94 a pa PA-p
In ca Hr0

0 0 z F 055

z z

0 0 0 4
1-a H H i.

H H H
U) U) M

o 0 0 0
A4 4.

to O

CN
z z~0 E-4 P

H 0 H3 0~

H '4iIH
W) 144 09 9En

0 00 - E4P
OH 0 z Z 1

Z) to)
H H OH E- 0E-1 E-10

E-4Z H 9 H HO u w
E-4 z W= D 4 q 4

0 i0 0O

P 0 W ~

w r r N N

>4 lz9 0 0O ON
pH M ~ H

0 E40 U) E4U) U
MU z 9 z U) 4

U) H 4 IH H

W E4 M 4 E-4:

C-4 P E- 0 - E41
r-4zo ozo z oz z4)

56

0

0

E-4

H

0

E-4

E-57

E- E0 0-

H H ."
E-4 E-1 E-

o 0 0 0
.4.)

H ~0 0HE- E! EU
H H H (N

9U to) 0 9 w
PQ ca0 E4 90
E E4 4 E4 4 00

94 9 ta o 44

E-1 EH EH E4 H 0OH

M E- raw wE-0 0

E-4 0 E-

UE O 0. Z

O(4 Nr NO

H H) ~4-)
U))E4U1 0 E4 0

U) UN E-) M)E-4
H) H) 0HU

z W49)
pq4 94pa

E-4E-E4 E- Mi)E-4

z 0z N z OZ.13 9, M: >4 (N 94 rr- >4 94 4.)

58

H .r

H

to0

0 0%4

E- '- -4
E- Hm 0 0

H 0 0H
z 41

0 0 WU -

Do 9 o 4 0 t40 H

0 0

UO 0 E401

EE4 -- OW

H 94E4r-4
z pq ral PQp)

m E- =I FA
PQ 0

z~~~ ~~ m M4
~~~~~4 I C%. 1 - > aC 42 49 4 0 4.3

599



4-)

o

1~- 0
'4-)

0'

'-44

o o

0

U44
mo

H ZH H H H .
0 ~ v4 4

o I 0 0 0 0
IrI4  rz4 l

U/) IU) U/) U U/)

o E0 0 0 0

0

4'

60



0

0

0

0

0

0'-4

0~ 0

Na EO

0
0 V4

uog
01 H

0 0

61



"04

04

to H

0 ena

rzz

H4 0 0

r141 MN

W000

E-44w i-

ZZ

0 w0 w

ZH HI4

ui-rz * -~ 0000

OH HH HH

z W00

62 zz



0

E- E-1

0

E-

V 0
>4

0

E-1 E-iO

zz.

rz
o

0U *

8 N cfl H Z

63



0 Z)
~Urm 0 >: >

E4 00z
04HH z4

u toCM E 0 z
XHHO0 04-

H H
Hn W
0 0 0

04 4-)
0 O 0
H

P4

Nowo 0 E-4 E-
CA 00 0 E-4 a4

O~-4 u A A H

o o~ E-4~ E-404
go0 HH pq >.I 04 z

EWl24NN 0 w. N N 0
Qu~C2CfH ~ E-1 V 41

0 EH HH = E-1 -50
z zx o m14 H HO u w

0 N 4)

PA >4 0 05P
HU z

u 4pa- 0 u- '40 o-4
pq H -

=amc 0 x CO CO
COHM0 O~H H r1-H4

u U(H~ H 5 4 04)

W Z E4 4U 0 M iIX PQ -4 rA4)

64



0

0

rz

0

CI

0
H

0

65



>4>4

H H

to to
0 0NN

H H

pq 0

U) 0

0 E4 0 z E-4
W H4

CI 0-4

CO z
H H- CO- >

W4 4

rz'-42
-4

66



04E4

E-1 4

M)0

C-)4
U) H

EE-4

wU) U-

w 0O 0
1-4 E-4)

rz C14U)
U) H

UU)

04 0

w 0

0

00

rz

HW H

OH 0~

'- U)

E-167



E-4
0 A

0
E-4 w0 0 0

IL) E- u 44

PQ CD' 4.

0 0 0

00

o E- 0 G
>4 4-)

oi~d

U0 0 00

E10H 0 E0 H 0
04 X E-4 0 W0 04 X E-bO

o- 0

ra E- 4J

944 W4 ~ 4

o 0'
0 0 0H H 0 4J

En 0 u to0 u 144
u 44 0 4u N 4E' PQ > H EI W >

'4: 94 A-) lu pq E lp 4 u i

0 QjH (n H O n 0 4r H z
3:z E-4 >4 m a 3 2c

68



APPENDIX Z

NAVAL AIRCRAFT FLIGHT RECORD RULE-BASE

Naval Aircraft Flight Record Expert System
By George J. Salitsky

I Naval Postgraduate School
This program is a prototype Front End Expert System
designed to maintain semantic integrity within the

I database according to the integrity constraints specified
I in the knowledge base.

AUTOQUERY;
RUNTIME;
ENDOFF;

ACTIONS
FORMAT TOTAL, 4.1
DISPLAY "THIS IS A FRONT END INTEGRITY EXPERT SYSTEM TO

ENABLE THE ACCURATE COLLECTION OF INFORMATION FOR THE
NAVYS AIRCRAFT FLIGHT RECORD, OPNAV 3710/4.

PRESS ANY KEY TO BEGIN...-"

loop to ask user which maintenance operation to perform on
the database. whichtask is the main menu, options include:

1. APPEND
2. UPDATE
3. DELETE
4. DISPLAY
5. EXIT

CLS
RESET WHICHTASK

WHILETRUE WHICHTASK <> EXIT THEN
RESET ALL

set up variable BLANK
CHR 32, BLANK
FIND WHICHTASK
FIND TASKCOMPLETED

END;

******************** APPEND OPERATION *

RULE APPENDRECORD
IF

69



WHICHTASK = APPENDRECORD
THEN

FIELD TO UPDATE = NONE
TASKCOMPLETED = YES
RESET DOCNUMNEW

ask user for document number
FIND DOCNUMNEW
RESET DOCNUMNOTMISSING

cannot allow a null value for document number
FIND DOCNUM NOT MISSING
RESET DOCNUMDUPLICATE

cannot allow duplicate document numbers
FIND DOCNUM DUPLICATE
DOCNUM = (DOCNUMNEW)
CLOSE FLIGHT
RESET SIDENUMNEW

ask user for aircraft side number
FIND SIDENUM NEW
RESET SIDENUM NOTMISSING

cannot allow a null value for side number
FIND SIDENUM NOT MISSING
RESET SIDENUM EXISTS

side number must match an aircraft in organization
FIND SIDENUM EXISTS
CLOSE AIRCRAFT
RESET EXCD

ask user for exception code
FIND EXCD
RESET EXCDVALID

only certain exception codes allowed
FIND EXCDVALID

I find mission code 1 position 1
CLS
RESET MSN1 1
FIND MSN1 1
RESET MSNT1 VALID
FIND MSN11 VALID

find mission code 1 position 2
CLS
RESET MSN1 2
FIND MSN1 2
RESET MSNI2 VALID
FIND MSN12 VALID

find mission code 1 position 3
CLS
RESET MSN1 3
FIND MSN1_3
RESET MSN13 VALID
FIND MSN13 VALID
CLS

I find mission 1 hours

70



RESET CHECK
FIND CHECK
TEMPHRS1 = 0
TEMPHRS2 = 0
TEMPHRS3 = 0
TOTHRS = 72.0

SUBTOTAL = 0
RESET HRSlVALID
FIND HRS1_VALID

: find mission code 2 position 1
CLS
RESET MSN21 VALID
FIND MSN21_VALID

! find mission code 2 position 2
CLS
RESET MSN22 VALID
FIND MSN22-VALID

! find mission code 2 position 3
CLS
RESET MSN23_VALID
FIND MSN23_VALID
CLS

! find mission 2 hours
RESET HRS2 VALID
FIND HRS2_VALID

! find mission code 3 position 1
CLS
RESET MSN31 VALID
FIND MSN31_VALID

! find mission code 3 position 2
CLS
RESET MSN32 VALID
FIND MSN32_VALID

find mission code 3 position 3
CLS
RESET MSN33 VALID
FIND MSN33_VALID
CLS

! find mission 3 hours
RESET HRS3 VALID
FIND HRS3 VALID
CLS

find total flights
RESET TOTFLT VALID
FIND TOTFLTVALID
CLS

! find ship/field operations code
RESET OPS VALID
FIND OPSVALID
CLS

find catapult/jato launches as necessary

71



GET ALL, ORGAN, CATSJATO
RESET CJ VALID
FIND CJ VALID
CLOSE ORGAN
CLS

! find airlift mission number as necessary
GET ALL, ORGAN, AIRLIFT
RESET AIRLIFT VALID
FIND AIRLIFTVALID
CLOSE ORGAN
CLS

! find number of hoists
RESET NUMHOISTVALID
FIND NUMHOIST VALID
CLS

append new record to flight database
APPEND FLIGHT

loop to get engine hours for aircraft on flight
determined by aircraft record

GET SIDENUM = (SIDENUMNEW), AIRCRAFT, ENGINES
CLOSE AIRCRAFT
RESET ENGHRS VALID
FIND ENGHRSVALID
CLS;

******************** UPDATE OPERATION *******************

RULE UPDATEDOCUMENT
IF

WHICHTASK = UPDATERECORD
THEN

TASKCOMPLETED = YES
RESET DOCNUM UPDATE
MENU DOCNUM UPDATE, ALL, FLIGHT, DOCNUM

! ask user for document number from menu of all document
! numbers

FIND DOCNUM UPDATE
MRESET DOCNUM UPDATE
RESET UPDATE
FIND UPDATE;

! determine if there are any Flight Records to update
RULE UPDATE
IF

DOCNUM UPDATE = NONE AND
UPDATE = UNKNOWN

THEN
I no flight records to update

UPDATE = NO
DISPLAY " THERE IS NO FLIGHT RECORD TO UPDATE.

72



PRESS ANY KEY TO CONTINUE
-to

CLS
ELSE
I flight records available to update

UPDATE = YES
GET DOCNUMUPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT
CLS
DISPLAY " YOU HAVE SELECTED RECORD NO. {DOCNUMUPDATE)

TO UPDATE." RESET FIELD TO UPDATE
ask user for attribute to update by menu fieldto_update

WHILETRUE FIELD TO UPDATE <> DONE THEN
RESET FIELD TO UPDATE
RESET UPDATE COMPLETED
FIND FIELD TO UPDATE
FIND UPDATE COMPLETED

END;

! ************* UPDATE DOCUMENT NUMBER *******************

RULE UPDATEDOCUMENTNUMBER
IF

FIELDTOUPDATE = DOCUMENTNUMBER
THEN

UPDATECOMPLETED = YES
! display current document number

DISPLAY "{DOCNUMUPDATE) IS CURRENTLY THE DOCUMENT
NUMBER.

o,

CLOSE FLIGHT
RESET DOCNUMNEW

! ask user for document number
FIND DOCNUM NEW
RESET DOCNUMNOTMISSING

cannot allow a null value for document number
FIND DOCNUM NOT MISSING
RESET DOCNUMDUPLICATE

cannot allow duplicate document numbers
FIND DOCNUM DUPLICATE
RESET DOCNUM NOT MISSING
RESET DOCNUMDUPLICATE
CLOSE FLIGHT
GET DOCNUM UPDATE = DOCNUM, FLIGHT, DOCNUM
DOCNUM = (DOCNUMNEW)
PUT FLIGHT
CLOSE FLIGHT

c change document number on ENGINE records
GET DOCNUMUPDATE = DOCNUM, FLTENG, DOCNUM
WHILETRUE DOCNUM <> UNKNOWN THEN

DOCNUM = (DOCNUM NEW)

73



PUT FLTENG
GET DOCNUMUPDATE = DOCNUM, FLTENG, DOCNUM

END
CLOSE FLTENG
FIELDTOUPDATE = DONE;

*************** UPDATE AIRCRAFT SIDE NUMBER **************

RULE UPDATESIDENUMBER
IF

FIELDTOUPDATE = SIDENUMBER
THEN

UPDATECOMPLETED = YES
GET DOCNUMUPDATE = DOCNUM, FLIGHT, SIDENUM

display current side number
DISPLAY "THE AIRCRAFT SIDE NUMBER IS CURRENTLY

{SIDENUM}.

CLOSE FLIGHT
RESET SIDENUM UPDATE

ask user for now aircraft side number
FIND SIDENUM UPDATE
RESET SIDENUM UPDATENOTMISSING

! cannot allow a null value for side number
FIND SIDENUM UPDATE NOT MISSING
RESET SIDENUM UPDATE EXISTS

side number must match an aircraft in organization
FIND SIDENUMUPDATE EXISTS
RESET SIDENUM UPDATE EXISTS
RESET SIDENUMUPDATENOTMISSING
CLOSE FLIGHT
GET DOCNUM UPDATE = DOCNUM, FLIGHT, SIDENUM
SIDENUM = (SIDE)
PUT FLIGHT
CLOSE FLIGHT
FIELDTOUPDATE = DONE;

! ********** UPDATE EXCEPTION CODE **************

RULE UPDATEEXCEPTIONCODE
IF

FIELDTOUPDATE = EXCEPTIONCODE
THEN

UPDATECOMPLETED = YES
display current exception code

DISPLAY "THE EXCEPTION CODE IS CURRENTLY {EXCD}
It

RESET EXCD NEW
FIND EXCDNEW

find if new exception code meets constraints
RESET UPDATEEXCDVALID

74



FIND UPDATEEXCD VALID
! from new exception code determine logic to keep database
! in a valid state

RESET EXCDRULE
FIND EXCDRULE;

*************** EXCEPTION CODE LOGIC **************
********************** RULE 1 ********************

change exception code to X (canceled flight)

RULE EXCEPTIONRULE_1
IF

FIELD TO UPDATE <> MISSION 1 CODE AND
FIELD TO UPDATE = EXCEPTIONCODE AND
EXCD NEW = X AND
EXCDRULE = UNKNOWN

THEN
EXCD RULE = TRUE
GET DOCNUM UPDATE = DOCNUM, FLIGHT, EXCD
RESET EXCD
EXCD = (EXCDNEW)

! need to get valid mission code 1
RESET MSN1 1
FIND MSN1 1
RESET MSNI1 VALID
FIND MSN11VALID
CLS
RESET MSN1 2
FIND MSN1 2
RESET MaN12 VALID
FIND MSN12_VALID
CLS
RESET MSN1 3
FIND MSN13
RESET MSN13 VALID
FIND MSN13_VALID
CLS
RESET MSN11 VALID
RESET MSN12 VALID
RESET MSN13 VALID

! set all other flight attributes are null
HRS1 = (BLANK)
MSN2 1 = (BLANK)
MSN2 2 = (BLANK)
MSN2 3 = (BLANK)
HRS2 = (BLANK)
MSN3 1 = (BLANK)
MSN3 2 = (BLANK)
MSN3 3 = (BLANK)
HRS3 = (BLANK)
TOTFT.T = (BLANK)

75



OPS = (BLANK)
CJ = (BLANK)
MISNUM = (BLANK)
NUMHOISTS = (BLANK)
REMARKS = (BLANK)
PUT FLIGHT
CLOSE FLIGHT

loop to remove related ENGINE records
GET DOCNUM UPDATE = DOCNUM, FLTENG, ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

DOCNUM = (BLANK)
ENGNUM = (BLANK)
ENGHRS = (BLANK)
PUT FLTENG
GET DOCNUMUPDATE = DOCNUM, FLTENG, ALL

END
CLOSE FLTENG
FIELDTOUPDATE = DONE;

*************** EXCEPTION CODE LOGIC **************
I *********************** RULE 2 ********************
change exception code from X (canceled flight)

RULE EXCEPTIONRULE_2
IF

FIELD TO UPDATE = EXCEPTIONCODE AND
EXCD RULE = UNKNOWN AND
EXCD NEW <> X AND
EXCD = X

THEN
EXCD RULE = TRUE
GET DOCNUM UPDATE = DOCNUM, FLIGHT, EXCD
DOCNUM = (DOCNUMUPDATE)
RESET EXCD
EXCD = (EXCDNEW)
RESET MSN1 1
FIND MSNI 1
RESET MSNII VALID
FIND MSN11VALID

! find mission code 1 position 2
CLS
RESET MSN1 2
FIND MSN1 2
RESET MSNI2 VALID
FIND MSN12-VALID

! find mission code 1 position 3
CLS
RESET MSNI 3
E ND MSN1 3
RESET MSNf3 VALID
FIND MSN13_VALID

76



CLS
find mission 1 hours

RESET CHECK
FIND CHECK
TEMPHRS1 = 0
TEMPHRS2 = 0
TEMPHRS3 = 0
TOTHRS = 72.0
SUBTOTAL = 0
RESET HRS1 VALID
FIND HRS1 VALID

find mission code 2 position 1
CLS
RESET MSN21_VALID
FIND MSN21 VALID

I find mission code 2 position 2
CLS
RESET MSN22 VALID
FIND MSN22 VALID

find mission code 2 position 3
CLS
RESET MSN23 VALID
FIND MSN23 VALID
CLS

I find mission 2 hours
RESET HRS2 VALID
FIND HRS2_VALID

1 find mission code 3 position 1
CLS
RESET MSN31 VALID
FIND MSN31_VALID

! find mission code 3 position 2
CLS
RESET MSN32_VALID
FIND MSN32_VALID

! find mission code 3 position 3
CLS
RESET MSN33 VALID
FIND MSN33_VALID
CLS

! find mission 3 hours
RESET HRS3 VALID
FIND HRS3_VALID
CLS

! find total flights
RESET TOTFLTVALID
FIND TOTFLTVALID
CLS

! find ship/field operations code
RESET OPS VALID
FIND OPSVALID

77



CLS
find catapult/jato launches as necessary

GET ALL, ORGAN, CATSJATO
RESET CJ VALID
FIND CJ VALID
CLOSE ORGAN
CLS

find airlift mission number as necessary
GET ALL, ORGAN, AIRLIFT
RESET AIRLIFT VALID
FIND AIRLIFTVALID
CLOSE ORGAN
CLS

find number of hoists
RESET NUMHOIST VALID
FIND NUMHOIST VALID

append new record to flight database
PUT FLIGHT
CLOSE FLIGHT

find engine hours for aircraft on flight
GET SIDE = (SIDENUM), AIRCRAFT, ENGINES
CLOSE AIRCRAFT
RESET UPDATE ENGHRS VALID
FIND UPDATEENGHRSVALID
CLS
FIELDTOUPDATE = DONE;

! *************** EXCEPTION CODE LOGIC **************
********************** RULE 2 *
change exception code from a value not X to a value
not X

RULE EXCEPTIONRULE_3
IF

FIELD TO UPDATE = EXCEPTIONCODE AND
EXCD RULE = UNKNOWN AND
EXCD NEW <> X AND
EXCD<> X

THEN
EXCD RULE = TRUE
CLS
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
EXCD = (EXCDNEW)
PUT FLIGHT
CLOSE FLIGHT
CLS
FIELDTOUPDATE = DONE;

************ UPDATE MISSION CODE 1 *******************

RULE UPDATE MISSIONCODE 1

78



IF
FIELDTOUPDATE = MISSIONCODE_1

THEN
UPDATE COMPLETED = YES

! display current mission code 1
DISPLAY "THE MISSION NUMBER 1 CODE IS CURRENTLY

{MSN1_1}{MSN1_2}{MSN1_3}

PRESS ANY KEY TO CONTINUE-"

find mission code 1 position 1
CLS
GET DOCNUM UPDATE = DOCNUM, FLIGHT, EXCD
RESET EXCD VALUE
FIND EXCD VALUE

I find mission code 1 position 1
RESET MSN1 1
FIND MSN1 1
RESET MSN11 VALID
FIND MSN11_VALID

! find mission code 1 position 2
CLS
RESET MSN1_2
FIND MSN1 2
RESET MSN12 VALID
FIND MSN12_VALID

! find mission code 1 position 3
CLS
RESET MSN1_3
FIND MSN1 3
RESET MSN13 VALID
FIND MSN13_VALID
CLS

! from new mission code 1 determine logic to keep database
! in a valid state

RESET MISSION CODEl RULE
FIND MISSIONCODElRULE;

*************** MISSION CODE 1 LOGIC **************
**************** RULE 1 ********************

exception code is X

RULE MISSIONCODE_1_RULE_1
IF

FIELD TO UPDATE = MISSIONCODE 1 AND
EXCD X

79



THEN
MISSION CODE1 RULE = USED
PUT FLIGHT
CLOSE FLIGHT
FIELDTOUPDATE = DONE;

! ********** MISSION CODE 1 LOGIC **************
! *********************** RULE 2 ********************
mission code 1 position 1 is 6 and exception code

is not X

RULE MISSIONCODE_1_RULE_2
IF

FIELD TO UPDATE = MISSIONCODE_1 AND
MSN1 I = 6 AND
EXCD <> X

THEN
MISSION CODE1_RULE = USED
CLS

! find mission 1 hours
RESET CHECK
FIND CHECK
TOTAL = 0
RESET HRS1 VALID
FIND HRS1 VALID
RESET MSN2 1

no other mission codes allowed
MSN2 1 = (BLANK)
RESET MSN2 2
MSN2 2 = (BLANK)
RESET MSN2 3
MSN2 3 = (BLANK)
RESET HRS2
HRS2 = (BLANK)
RESET MSN3 1
MSN3 1 = (BLANK)
RESET MSN3 2
MSN3 2 = (BLANK)
RESET MSN3 3
MSN3 3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
PUT FLIGHT
CLOSE FLIGHT

update engine hours for aircraft
RESET MISSION1ENGHRS VALID
FIND MISSION1_ENGHRSVALID
FIELDTOUPDATE = DONE;

1 loop to update engine hours resulting from updating
mission code 1 when mission code 1 position 1 is 6

80



! and exception code is not equal to X

RULE UPDATEMISSION_1_ENGINEHOURS
IF

MSN1 1 = 6 AND
EXCD <> X AND
MISSION1 ENGHRS VALID = UNKNOWN AND
FIELDTOUPDATE = MISSIONCODE_1

THEN
MISSION1_ENGHRSVALID = TRUE
Y = 1
GET DOCNUM UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,

ALL WHILETRUE ENGNUM <> UNKNOWN THEN
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS VALID
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END
CLOSE FLTENG;

*************** MISSION CODE 1 LOGIC **************
*********************** RULE 3 ********************
mission code 1 position 1 is not 6 and exception code

is not X

RULE MISSIONCODE_1_RULE_3
IF

FIELD TO UPDATE = MISSIONCODE_1 AND
MSN1 f <> 6 AND
EXCD <> X

THEN
MISSION CODE1 RULE = USED
PUT FLIGHT
CLOSE FLIGHT
FIELDTOUPDATE = DONE;

! ******** UPDATE MISSION HOURS 1 ***************

RULE UPDATEHRS1
IF

FIELDTOUPDATE = MISSION_1_HOURS
THEN

UPDATE COMPLETED = YES
TOTAL = 0
GET DOCNUMUPDATE = DOCNUM, FLIGHT, ALL

81



RESET EXCD VALUE
FIND EXCDVALUE

! find if mission hours 1 is valid
RESET UPDATE HRS1 VALID
FIND UPDATEHRS1_VALID
PUT FLIGHT
CLOSE FLIGHT

loop to update ENGINE records after change to mission
hours 1

GET SIDENUM = SIDE, AIRCRAFT, ENGINES
CLOSE AIRCRAFT
Y= 1
WHILETRUE UPDATEHRS1_VALID <> FALSE AND Y <= (ENGINES)
THEN

GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL
RESET ENGHRS
FIND ENGHRS

find if engine hours is valid
RESET ENGHRS VALID
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
PUT FLTENG
CLS

END
CLOSE FLTENG
FIELDTOUPDATE = DONE;

*************** UPDATE MISSION CODE 2 *

RULE UPDATEMISSIONCODE_2
IF

FIELDTOUPDATE = MISSIONCODE_2
THEN

UPDATECOMPLETED = YES
display current mission code 2

DISPLAY "THE MISSION NUMBER 2 CODE IS CURRENTLY
{1MSN2_1}{1MSN2_2}{1MSN2_3}

PRESS ANY KEY TO CONTINUE-"

find mission code 2 position 1
CLS
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT

82



TOTAL = (HRS1)
! determine if you are allowed to update mission code 2

RESET MISSION CODE2 RULE
FIND MISSIONCODE2 RULE

! from new mission code 2 determine logic to keep database
! in a valid state

RESET MISSION 2 VALUE
FIND MISSION 2 VALUE
FIELDTOUPDATE = DONE;

*************** MISSION CODE 2 ALLOWED *
mission code 2 not allowed if exception code is X

or mission code 1 position 1 is equal to 6

RULE MISSIONCODE_2_RULE
IF

FIELD TO UPDATE = MISSIONCODE 2 AND
EXCD = X OR
MSN1_1 = 6

THEN
mission code 2 not allowed
display message

MISSION CODE2 RULE = NOT USED
DISPLAY " YOU ARE NOT ALLOWED TO ENTER A MISSION CODE

FOR ONE OF THE FOLLOWING REASONS:
1. F'CEPTION CODE = X
2. : SSION CODE 1 BEGINS WITH A 6

PRESS ANY KEY TO CONTINUE

CLS
CLOSE FLIGHT

ELSE
mission code 2 allowed

MISSION CODE2 RULE = USED
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL

find mission code 2 position 1
RESET MSN2_1
RESET MSN2_2
RESET MSN2 3
RESET MSN21 VALID
FIND MSN21 VALID

! find mission code 2 position 2
CLS
RESET MSN22_VALID
FIND MSN22_VALID

! find mission code 2 position 3
CLS
RESET MSN23_VALID

83



FIND MSN23_VALID
PUT FLIGHT
CLOSE FLIGHT;

! ************ MISSION CODE 2 LOGIC **************
*********************** RULE 1 ********************

new mission code 2 is null

RULE MISSIONCODE2_VALUERULE1
IF

FIELD TO UPDATE = MISSION CODE 2 AND
MISSION CODE2 RULE = USED AND
SKIP = YES

THEN
MISSION 2 VALUE = MISSING
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL

remove mission code 2, 3 along with mission hours 2, 3
RESET MSN2 2
MSN2 2 = (BLANK)
RESET MSN2 3
MSN2 3 = (BLANK)
RESET HRS2
HRS2 = (BLANK)
RESET MSN3 1
MSN3 1 = (BLANK)
RESET MSN3 2
MSN3 2 = (BLANK)
RESET MSN3 3
MSN3 3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
PUT FLIGHT
CLOSE FLIGHT
Y= 1

loop to update ENGINE records
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL

WHILETRUE ENGNUM <> UNKNOWN THEN
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS VALID
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUM UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END
CLOSE FLTENG;

84



*************** MISSION CODE 2 LOGIC **************
*********************** RULE 2 ********************

replace current mission code 2

RULE MISSIONCODE2_VALUERULE2
IF

FIELD TO UPDATE = MISSION CODE 2 AND
MISSIONCODE2 RULE = USED AND -
TOTAL <> (HRST + HRS2 + HRS3) and
SKIP = NO

THEN
MISSION 2 VALUE = NOT MISSING
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
PUT FLIGHT
CLOSE FLIGHT;

*************** MISSION CODE 2 LOGIC **************
*********************** RULE 3 ********************

mission code 2 was previously null

RULE MISSIONCODE2_VALUERULE3
IF

FIELD TO UPDATE = MISSION CODE 2 AND
MISSION CODE2 RULE = USED AND
TOTAL --(HRS17 AND
SKIP = NO

THEN
MISSION 2 VALUE = NOT MISSING
GET DOCNUMUPDATE = DOCNUM, FLIGHT, ALL
CLS
RESET CHECK
FIND CHECK
TEMPHRS1 = 0
TEMPHRS2 = 0
TEMPHRS3 = 0
TOTHRS = 72.0
SUBTOTAL = 0

! find mission 2 hours
RESET HRS2
FIND HRS2
RESET TEST HRS2
WHILETRUE TESTHRS2 = UNKNOWN OR TESTHRS2 = NOT TRUE
THEN

! find if mission hours 2 is valid
RESET TEST HRS2
FIND TEST-RS2

END
CLS
PUT FLIGHT
CLOSE FLIGHT

loop to update ENGINE records

85



Y = 1
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS
FIND ENGHRS

find if engine hours is valid
RESET ENGHRSVALID
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END
CLOSE FLTENG;

! ********** MISSION CODE 2 LOGIC **************
*********************** RULE 4 ********************

mission code 2 is not allowed

RULE MISSIONCODE2_VALUERULE4
IF

FIELD TO UPDATE = MISSION CODE_2 AND
MISSIONCODE2_RULE = NOTUSED

THEN
MISSION_2_VALUE = NOTREQUIRED
CLS;

*************** UPDATE MISSION HOURS 2 *

RULE UPDATEHRS2
IF

FIELDTOUPDATE = MISSION_2_HOURS
THEN

UPDATE COMPLETED = YES
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
TOTAL = (HRS1)
CHECKSUM = (HRS1 +HRS2)
RESET EXCD VALUE
FIND EXCD VALUE

! find if mission hours 2 is valid
RESET UPDATE HRS2 VALID
FIND UPDATEHRS2_VALID
PUT FLIGHT
CLOSE FLIGHT

loop to update ENGINE records
Y = 1
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL

86



WHILETRUE ENGNUM <> UNKNOWN AND UPDATEHRS2 VALID <>
FALSE
THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS VALID
RESET ENGHRS LOOP
FIND ENGHRSLOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMUPDATE = DOCNUM AND ENGNUM (Y),
FLTENG, ALL

END
CLOSE FLTENG
FIELD TO UPDATE = DONE;

*************** UPDATE MISSION CODE 2 ***************

RULE UPDATEMISSIONCODE_3
IF

FIELDTOUPDATE = MISSIONCODE_3
THEN

UPDATECOMPLETED = YES
display current mission code 3

DISPLAY "THE MISSION NUMBER 3 CODE IS CURRENTLY
{JMSN3_1}{1MSN3_2}{1MSN3_3}

PRESS ANY KEY TO CONTINUE-"

! find mission code 3 position 1
CLS
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
CLOSE FLIGHT
TOTAL1 = (HRS1)
TOTAL2 = (HRS1 + HRS2)
TOTAL = (TOTAL2)

! determine if you are allowed to update mission code 3
RESET MISSION CODE3 RULE
FIND MISSIONCODE3 RULE

! from new mission code 3 determine logic to keep database
! in a valid state

RESET MISSION 3 VALUE
FIND MISSION 3 VALUE
FIELDTOUPDATE = DONE;

87



*************** MISSION CODE 3 ALLOWED ************
mission code 3 not allowed if exception code is X

or mission code 1 position 1 is equal to 6 or
mission code 2 is null

RULE MISSIONCODE_3_RULE
IF

FIELD TO UPDATE = MISSIONCODE_3 AND
EXCD = X OR
MSN1 1 = 6 OR
TOTAL2 = (TOTAL1)

THEN
! mission code 3 is not allowed
! display message

MISSION CODE3 RULE = NOT USED
DISPLAY-" YOU-ARE NOT ALLOWED TO ENTER A MISSION CODE

FOR ONE OF THE FOLLOWING REASONS: 1.
EXCEPTION CODE = X

2. MISSION CODE 1 BEGINS WITH A 6
3. THERE IS NO MISSION 2 CODE

PRESS ANY KEY TO CONTINUE

CLS
CLOSE FLIGHT

ELSE
! mission code 3 is allowed

MISSION CODE3 RULE = USED
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL

! find mission code 3 position 1
RESET MSN3 1
RESET MSN3 2
RESET MSN3 3
RESET MSN31 VALID
FIND MSN31 VALID

! find mission code 3 position 2
CLS
RESET MSN32 VALID
FIND MSN32_VALID

! find mission code 3 position 3
CLS
RESET MSN33 VALID
FIND MSN33 VALID
PUT FLIGHT
CLOSE FLIGHT;

*************** MISSION CODE 3 LOGIC **************
! ************** RULE 1 ********************

mission code 3 is null

88



RULE MISSIONCODE3_VALUERULE1
IF

FIELD TO UPDATE = MISSION CODE 3 AND
MISSION CODE3 RULE = USED AND
SKIPAGAIN = YES

THEN
MISSION 3 VALUE = MISSING
GET DOCNUMUPDATE = DOCNUM, FLIGHT, ALL
RESET MSN3 2

all related flight attributes are null
MSN3 2 = (BLANK)
RESET MSN3 3
MSN3 3 = (BLANK)
RESET HRS3
HRS3 = (BLANK)
RESET MSN3_1
PUT FLIGHT
CLOSE FLIGHT

loop to update ENGINE records
Y = 1
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS VALID
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END
CLOSE FLTENG;

*************** MISSION CODE 3 LOGIC **************
* ** RULE 2 *

replace current mission code 3

RULE MISSION CODE3 VALUE RULE2
IF

FIELD TO UPDATE = MISSION CODE 3 AND
MISSION CODE3 RULE = USED-AND -
TOTAL2 <> (HRS1 + HRS2 + HRS3) and
SKIP-AGAIN = NO

THEN
MISSION 3 VALUE = NOT MISSING
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL
PUT FLIGHT
CLOSE FLIGHT;

89



*************** MISSION CODE 3 LOGIC **************
*********************** RULE 2 ********************

mission code 3 was previously null

RULE MISSIONCODE3 VALUERULE3
IF

FIELD TO UPDATE = MISSION CODE 3 AND
MISSION CODE3 RULE = USED AND -

TOTAL2 = (HRSY + HRS2 +HRS3) AND

SKIP = NO
THEN

MISSION 3 VALUE = NOT MISSING
GET DOCNUMUPDATE = DOCNUM, FLIGHT, ALL

CLS
find mission 3 hours

RESET CHECK
FIND CHECK
TEMPHRS1 = 0
TEMPHRS2 = 0
TEMPHRS3 = 0
TOTHRS = 72.0
SUBTOTAL = 0

find mission 3 hours
RESET HRS3
FIND HRS3
RESET TEST HRS3
WHILETRUE TESTHRS3 = UNKNOWN OR TESTHRS3 = NOT-TRUE
THEN

RESET TEST HRS3
FIND TEST HRS3

END
CLS
PUT FLIGHT
CLOSE FLIGHT

loop to update ENGINE records
Y = 1
GET DOCNUM UPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRSVALID
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUM UPDATE DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END
CLOSE FLTENG;

90



*************** MISSION CODE 3 LOGIC *
*********************** RULE 2 ****************

mission code 3 not allowed

RULE MISSIONCODE3_VALUERULE4
IF

FIELD TO UPDATE = MISSION CODE 3 AND
MISSION CODE3_RULE = NOT USED

THEN
MISSION_3_VALUE = NOT-REQUIRED
CLS;

*************** UPDATE MISSION HOURS 3 ***************

RULE UPDATEHRS3
IF

FIELDTOUPDATE = MISSION_3_HOURS
THEN

UPDATE COMPLETED = YES
GET DOCNUM UPDATE = DOCNUM, FLIGHT, ALL

1 display current mission hours 3
DISPLAY "{HRS3} IS CURRENTLY THE MISSION 3 HOURS.

I

TOTAL1 = (HRS1 + HRS2 + HRS3)
TOTAL = (HRS1 + HRS2)
CHECKSUM = (HRS1)
RESET EXCD VALUE
FIND EXCD VALUE

! find if mission hours 3 is valid
RESET UPDATE HRS3 VALID
FIND UPDATE HRS3 VALID
PUT FLIGHT
CLOSE FLIGHT

loop to update ENGINE records
Y = 1
GET DOCNUMUPDATE = DOCNUM AND ENGNUM = (Y), FLTENG,
ALL
WHILETRUE ENGNUM <> UNKNOWN AND UPDATEHRS3_VALID <>
FALSE THEN

RESET ENGHRS
FIND ENGHRS
RESET ENGHRS VALID
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
PUT FLTENG
CLS
GET DOCNUM UPDATE = DOCNUM AND ENGNUM = (Y),
FLTENG, ALL

END
CLOSE FLTENG

91



FIELDTOUPDATE = DONE;

**************** UPDATE TOTAL FLIGHTS ****************

RULE UPDATETOTALFLIGHTS
IF

FIELDTOUPDATE = TOTALFLIGHTS
THEN

UPDATECOMPLETED = YES
! display current total flight

DISPLAY "{TOTFLT} IS CURRENTLY THE TOTAL FLIGHTS.
I'

CLOSE FLIGHT
find if total flight is valid

RESET UPDATE TOTFLT VALID
FIND UPDATETOTFLT VALID
CLS
FIELDTOUPDATE = DONE;

************ UPDATE SHIP/FIELD OPERATIONS **************

RULE UPDATESHIPFIELDOPERATIONSCODE
IF

FIELDTOUPDATE SHIPFIELDOPERATIONSCODE
THEN

UPDATECOMPLETED = YES
display current ship/field operations code

DISPLAY "{OPS} IS CURRENTLY THE SHIP/FIELD OPERATIONS
CODE.

CLOSE FLIGHT
find if ship/field operations code is valid

RESET UPDATE OPS VALID
FIND UPDATEOPSVALID
CLS
FIELDTOUPDATE = DONE;

************ UPDATE CATAPULT/JATO LAUNCHES **************

RULE UPDATECATAPULTJATOLAUNCHES
IF

FIELDTOUPDATE = CATAPULTJATOLAUNCHES
THEN

UPDATECOMPLETED = YES
display current catapult/jato launches

DISPLAY "{CJ} IS CURRENTLY THE NUMBER OF CATAPULT/JATO
LAUNCHES.
'I

CLOSE FLIGHT
find catapult/jato launches as necessary

GET ALL, ORGAN, CATSJATO
find if cj is valid

92



RESET UPDATE CJ VALID
FIND UPDATECJVALID
CLOSE ORGAN
CLS
FIELDTOUPDATE = DONE;

************ UPDATE AIRLIFT MISSION NUMBER **************

RULE UPDATEAIRLIFTMISSIONNUMBER
IF

FIELDTOUPDATE = AIRLIFTMISSIONNUMBER
THEN

UPDATECOMPLETED = YES
display current airlift mission number

DISPLAY "{MISNUM} IS CURRENTLY THE AIRLIFT MISSION
NUMBER.

CLOSE FLIGHT
find airlift mission number as necessary

GET ALL, ORGAN, AIRLIFT
find if airlift mission number is valid

RESET UPDATE AIRLIFT VALID
FIND UPDATE AIRLIFT VALID
CLOSE ORGAN
CLS
FIELDTOUPDATE = DONE;

** ** UPDATE NUMBER OF HOISTS *

RULE UPDATENUMBEROFHOISTS
IF

FIELDTOUPDATE = NUMBEROFHOISTS
THEN

UPDATECOMPLETED = YES
I display current number of hoists

DISPLAY "{NUMHOISTS} IS CURRENTLY THE NUMBER OF HOISTS.
i,

CLOSE FLIGHT
find if number of hoists is valid

RESET UPDATE NUMHOISTS VALID
FIND UPDATENUMHOISTSVALID
CLS
FIELDTOUPDATE = DONE;

************ UPDATE ENGINE HOURS *

RULE UPDATEENGINEHOURS
IF

FIELDTOUPDATE = ENGINEHOURS
THEN

UPDATECOMPLETED = YES

93



find if engine hours valid
RESET UPDATE ENGINE HOURS VALID
FIND UPDATEENGINEHOURSVALID
CLS
FIELDTOUPDATE = DONE;

******************* UPDATE DONE ***********************

RULE DONE
IF

FIELDTOUPDATE DONE
THEN

UPDATECOMPLETED = YES;

*********************D*LET OPERATION********************

RULE DELETEDOCUMENT
IF

WHICHTASK = DELETERECORD
THEN

TASKCOMPLETED = YES
MENU DOCNUM DELETE, ALL, FLIGHT, DOCNUM

! ask user for document number from menu of document numbers
FIND DOCNUM DELETE
MRESET DOCNUM DELETE

! ask user to confirm delete operation
RESET CONTINUE
FIND CONTINUE

! find if any documents to delete
RESET DELETE
FIND DELETE;

! determine if there are any flight records to delete

RULE DELETE
IF

DOCNUM DELETE = NONE OR
CONTINUE = NO AND
DELETE = UNKNOWN

THEN
no records to delete or user has changed mind
display message

DELETE = NO
DISPLAY " NO FLIGHT RECORD DELETED.

PRESS ANY KEY TO CONTINUE

CLS
ELSE
I records available to delete
! and user has confirmed deletion

94



DELETE = YES
GET DOCNUM DELETE = DOCNUM, FLIGHT, ALL

! all attributes are set to null
DOCNUM = (BLANK)
EXCD = (BLANK)
MSN11 = (BLANK)
MSN12 = (BLANK)
MSN1_3 = (BLANK)
HRS1 = (BLANK)
MSN2_1 = (BLANK)
MSN2_2 = (BLANK)
MSN2_3 = (BLANK)
HRS2 = (BLANK)
MSN3_1 = (BLANK)
MSN3_2 = (BLANK)
MSN3_3 = (BLANK)
HRS3 = (BLANK)
TOTFLT = (BLANK)
OPS = (BLANK)
CJ = (BLANK)
MISNUM = (BLANK)
NUMHOISTS = (BLANK)
REMARKS = (BLANK)
SIDENUM = (BLANK)
PUT FLIGHT
CLOSE FLIGHT

Cascade delete feature
! all associated records in with FLIGHT set to null

GET DOCNUM DELETE = DOCNUM, FLTENG, ALL
WHILETRUE ENGNUM <> UNKNOWN THEN

DOCNUM = (BLANK)
ENGNUM = (BLANK)
ENGHRS = (BLANK)
PUT FLTENG
GET DOCNUMDELETE = DOCNUM, FLTENG, ALL

END
CLOSE FLTENG;

* ** VIEW OPERATION *

RULE VIEWDOCUMENT
IF

WHICHTASK = DISPLAYRECORD
THEN

RESET ALL
WHICHTASK = DISPLAYRECORD
FORMAT HRS1, 4.1
FORMAT HRS2, 4.1
FORMAT HRS3, 4.1
FORMAT ENGHRS, 4.1
TASKCOMPLETED = YES

95



RESET DOCNUM VIEW
MENU DOCNUMVIEW, ALL, FLIGHT, DOCNUM

ask user for document number
FIND DOCNUM VIEW
MRESET DOCNUM VIEW

! find if any flight records to view
RESET VIEW
FIND VIEW;

! determine if there are any documents to view

RULE VIEW
IF

DOCNUM VIEW = NONE AND
VIEW = UNKNOWN

THEN
no flight records to view

VIEW = NO
DISPLAY " THERE IS NO FLIGHT RECORD TO VIEW.

PRESS ANY KEY TO CONTINUE

CLS
ELSE

flight record available to view
VIEW = YES
GET DOCNUM VIEW = DOCNUM, FLIGHT, ALL
SIDENO = (SIDENUM)
CLOSE FLIGHT
GET SIDENO = SIDE, AIRCRAFT, ALL
CLOSE AIRCRAFT
GET ALL, ORGAN, ALL
CLOSE ORGAN
CLS

1 format for display
DISPLAY " NAVAL AIRCRAFT FLIGHT RECORD

NO. {DOCNUMI
AIRCRAFT DATA
{3SIDENUM} {IEXCD) {6BUNO} {4TEC} {30RG}
{1MSN1_}jMSN12}{IMSNI 3} {4HRS1I
{IMSN2 I}{IMSN22}{IMSN2 3} {4HRS2}
{IMSN3_}{1MSN3 2}{IMSN3 3} {4HRS3} {2SUPTCD} {2TOTFLT}
{lOPS} {2CJ} SIDE E BUNO/SER TEC ORG MSN1 HRS1 MSN2
HRS2 MSN3 HRS3 SUPT TOT 0 CAT/ NO. X

TOTAL MISSION REQ DATA CODE FLT P JATO C
S

D

{9MISNUM) {2NUMHOISTs}
AIRLIFT MISSION NO. NO.

96



HOISTS

GET DOCNUM VIEW = DOCNUM, FLTENG, ALL
WHILEKNOWN ENGNUM

DISPLAY " ENGINE NO(ENGNUM} ENGINE HOURS
{4ENGHRS}"
GET DOCNUM VIEW = DOCNUM, FLTENG, ALL

END
DISPLAY "

PRESS ANY KEY TO CONTINUE ..... "
CLOSE FLTENG
CLS;

********************* EXIT OPERATION *

RULE EXIT
IF

WHICHTASK = EXIT
THEN

TASKCOMPLETED = YES;

! rule to determine if exception code within record is
! null and assign value BLANK to it

RULE EXCEPTIONCODEVALUE
IF

WHICHTASK = UPDATERECORD AND
EXCD = UNKNOWN

THEN
EXCD VALUE = NEEDED
RESET EXCD
EXCD = (BLANK)

ELSE
EXCDVALUE = NOTNEEDED;

rule to check value of exception code is equal to X
1 and mission code 1 position 1 is equal to 6

RULE CHECKVALUE
IF

MSN1 1 = 6 OR
EXCD-= X

THEN
CHECK = YES

ELSE
CHECK = NO;

rules to determine if repeating attributes
1 (mission code n, n+l,...) should be skipped

97



RULE TESTUNKNOWN1
IF

MSN2_1 = UNKNOWN OR
MSN2_1 = (BLANK)

THEN
SKIP = YES
SKIPAGAIN = YES

ELSE
SKIP = NO;

RULE TESTUNKNOWN2
IF

MSN3_1 = UNKNOWN OR
MSN3_1 = (BLANK)

THEN
SKIP AGAIN = YES

ELSE
SKIPAGAIN = NO;

!*********** KNOWLEDGE BASE LIBRARY *

!********* DOMAIN INTEGRITY CONSTRAINTS *********

THESE CONSTRAINTS ARE DEFINED IN DATA TYPES

1"******** COLUMN INTEGRITY CONSTRAINTS *********

RULE EXCEPTIONCODEVALID
IF

EXCDVALID = UNKNOWN
THEN

WHILETRUE EXCD VALID = UNKNOWN THEN
RESET TEST EXCD
FIND TESTEXCD

END
EXCDVALID = TRUE;

RULE COLUMN INTEGRITY EXCEPTION CODE
IF

EXCD = C OR
EXCD = D OR
EXCD = X OR
EXCD = UNKNOWN OR
EXCD = (BLANK) AND
EXCDVALID = UNKNOWN

THEN
TEST EXCD = YES
EXCDVALID = TRUE

ELSE
TEST EXCD = YES
DISPLAY " YOU NEED TO ENTER A VALID EXCEPTION CODE TO

98



CONTINUE."
RESET EXCD
FIND EXCD;

RULE UPDATEEXCEPTIONCODEVALID
IF

FIELD TO UPDATE = EXCEPTIONCODE AND
UPDATEEXCDVALID = UNKNOWN

THEN
WHILETRUE UPDATE EXCD VALID = UNKNOWN THEN

RESET TEST UPDATE EXCD
FIND TESTUPDATEEXCD

END
UPDATEEXCDVALID = TRUE;

RULE COLUMN INTEGRITY UPDATEEXCEPTION CODE
IF

EXCDNEW = C OR
EXCDNEW = D OR
EXCDNEW = X OR
EXCD NEW = (BLANK) AND
FIELDTOUPDATE EXCEPTION CODE

THEN
TEST UPDATE EXCD = YES
UPDATEEXCDVALID = TRUE

ELSE
TESTUPDATEEXCD = YES
DISPLAY " YOU NEED TO ENTER A VALID EXCEPTION CODE TO
CONTINUE."
PESET EXCD NEW
FIND EXCD_NEW;

RULE MISSION_1_POSITION_1
IF

MSN11VALID = UNKNOWN
THEN

WHILETRUE MSN11 VALID = UNKNOWN THEN
RESET TEST MSN11
FIND TESTMSN11

END
MSN11VALID = TRUE;

RULE COLUMNINTEGRITY MISSION11 CODE
IF

MSN1 1 >= 1 AND
MSN1 1 <= 6

THEN
TEST MSN11 = YES
MSN1I1VALID = TRUE

ELSE
TESTMSN11 = YES

99



DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 6."
RESET MSN1_1
FIND MSN11;

RULE MISSION_1_POSITION_3
IF

MSN13_VALID = UNKNOWN
THEN

WHILETRUE MSN13 VALID = UNKNOWN THEN
RESET TEST MSN13
FIND TESTMSN13

END
MSN13 VALID = TRUE
DISPLAY "{MSN1_I}{MSN1_2}{MSNI_3}

PRESS ANY KEY TO CONTINUE-";

RULE TESTMISSION13_CODE VALID
IF

MSN1 3 >= 0 AND
MSN13 <= 9

THEN
TEST MSN13 = YES
MSN13_VALID = TRUE

ELSE
TEST MSN13 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 0 TO 9."
RESET MSN1 3
FIND MSN1 3;

RULE HRS_1_VALID
IF

EXCD = X
THEN

HRS1VALID = NOTNEEDED
ELSE

RESET HRS1
FIND HRS1
WHILETRUE HRS1 VALID = UNKNOWN THEN

RESET TEST HRS1
FIND TESTHRS1

END
HRS1VALID = TRUE;

RULE UPDATE HRS_1_VALID
IF

FIELD TO UPDATE = MISSION_1_HOURS AND
EXCD = X

THEN
DISPLAY " YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 1

BECAUSE THE EXCEPTION CODE IS CURRENTLY {EXCD}
it

100



UPDATEHRS1_VALID = FALSE
ELSE

SUBTOTAL HOURS = ((HRS2) + (HRS3))
ALLOWED HOURS = (72 - (SUBTOTALHOURS))
RESET HRS1
FIND HRS1
WHILETRUE UPDATE HRS1 VALID = UNKNOWN THEN

RESET UPDATE TEST HRS1
FIND UPDATETEST HlSl

END
UPDATEHRS1_VALID = TRUE;

RULE UPDATEHRS_2_VALID
IF

FIELDTOUPDATE = MISSION_2_HOURS AND
CHECK = YES CR
TOTAL = (CHECKSUM)

THEN
DISPLAY "YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 2

BECAUSE:
1. THE EXCEPTION CODE IS CURRENTLY X
2. THE MISSION 1 CODE BEGINS WITH A 6
3. THE MISSION 2 CODE IS MISSING

I

UPDATEHRS2_VALID = FALSE
ELSE

SUBTOTAL HOURS ((HRS1) + (HRS3))
ALLOWEDHOURS = (72 - (SUBTOTALHOURS))
RESET HRS2
FIND HRS2
WHILETRUE UPDATEHRS2 VALID = UNKNOWN THEN

RESET UDATE TEST HRS2
FIND UPDATETEST HRS2

END
UPDATEHRS2_VALID = TRUE;

RULE UPDATEHRS_3_VALID
IF

FIELDTOUPDATE = MISSION_3_HOURS AND
CHECK = YES OR
TOTAL = (CHECKSUM) OR
TOTAL = (TOTALl)

THEN
DISPLAY "YOU ARE NOT ABLE TO ENTER HOURS FOR MISSION 3

BECAUSE:
1. THE EXCEPTION CODE IS CURRENTLY X
2. THE MISSION 1 CODE BEGINS WITH A 6
3. TFE MISSION 2 CODE IS MISSING
4. ThE MISSION 3 CODE IS MISSING

UPDATE HRS3_VALID = FALSE

101



ELSE
SUBTOTAL HOURS = ((HRS1) + (HRS2))
ALLOWED HOURS = (72 - (SUBTOTALHOURS))
RESET HRS3
FIND HRS3
WHILETRUE UPDATE HRS3 VALID = UNKNOWN THEN

RESET UPDATE TEST HRS3
FIND UPDATETEST HRS3

END
UPDATEHRS3_VALID = TRUE;

RULE COLUdN INTEGRITY UPl.TE_ RSi
IF

FIELD TO UPDATE = MISSION _ HOURS AND
HRS1 > 0.0 AND
HRS1 <= (ALLOWEDHOURS)

THEN
UPDATE TEST HRS1 = YES
UPDATEHRS1 VALID = TRUE
TOTAL = ((HRS1) + (SUBTOTALHOURS))

ELSE
UPDATE TEST HRS1 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
(ALLOWED HOURSJ}"
RESET HRSI
FIND HRS1;

RULE COLUMNINTEGRITYUPDATEERS2
IF

FIELD TO UPDATE = MISSION_2_HOURS AND
HRS2 > 0.0 AND
HRS2 <= (ALLOWEDHOURS)

THEN
UPDATE TEST HRS2 = YES
UPDATE HRS2 VALID = TRUE
TOTAL = ((HRS2) + (SUBTOTALHOURS))

ELSE
UPDATE TEST HRS2 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ALLOWED HOURS)"
RESET HRS2
FIND HRS2;

RULE COLUMNINTEGRITYUPDATEERS3
IF

FIELD TO UPDATE = MISSION_3_HOURS AND
HRS3 > 0.0 AND
HRS3 <= (ALLOWEDHOURS)

THEN
UPDATE TEST HRS3 = YES
UPDATEHRS3_VALID = TRUE

102



TOTAL = ((HRS3) + (SUBTOTALHOURS))
ELSE

UPDATE TEST HRS3 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{ALLOWED HOURS}"
RESET HRS3
FIND HRS3;

RULE COLUMNINTEGRITY ERSI
IF

HRS1 > 0.0 AND
HRS1 <= 72.0

THEN
TEST HRS1 = YES
HRS1 VALID = TRUE
TOTAL = (HRS1)

ELSE
TEST HRS1 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO 72.0"
RESET HRS1
FIND HRS1;

RULE MISSION_2_POSITION_1
IF

CHECK = YES
THEN

MSN21 VALID = NOTNEEDED
SKIP = YES
SKIPAGAIN = YES

ELSE
RESET MSN2 1
FIND MSN2 1
RESET SKIP
FIND SKIP
WHILETRUE MSN21 VALID = UNKNOWN THEN

RESET TEST MSN21
FIND TEST MSN21

END
MSN21_VALID = TRUE;

RULE COLUMN-INTEGRITY MISSION21
IF

MSN2 1 >= 1 OR
MSN2 1 = UNKNOWN OR
MSN2 1 = (BLANK) AND
MSN2 1 <= 5 OR
MSN2 1 = UNKNOWN OR
MSN2 1 = (BLANK)

THEN
TEST MSN21 = YES
MSN21_VALID = TRUE

103



ELSE
TEST MSN21 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 5."
RESET MSN2_1
FIND MSN2_1;

RULE MISSION_2_POSITION_2
IF

CHECK = YES OR
SKIP = YES

THEN
MSN22_VALID = NOT-NEEDED;

RULE TESTMISSION23_CODE VALID
IF

CHECK = YES OR
SKIP = YES

THEN
MSN23_VALID = NOTNEEDED

ELSE
RESET MSN2_3
FIND MSN2_3
WHILETRUE MSN23 VALID = UNKNOWN THEN

RESET TESTMSN23
FIND TESTMSN23

END
MSN23 VALID = TRUE
DISPLAY "{MSN2 1I}{MSN2 2}{MSN2 3}

PRESS ANY KEY TO CONTINUE-";

RULE TESTMISSION23_CODEVALID
IF

MSN2 3 >= 0 AND
MSN2 3 <= 9

THEN
TEST MSN23 = YES
MSN23_VALID = TRUE

ELSE
TEST MSN23 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 0 TO 9."
RESET MSN2_3
FIND MSN2_3;

RULE HRS_2_VALID
IF

CHECK = YES OR
SKIP = YES

THEN
HRS2_VALID = NOTNEEDED

ELSE
RESET HRS2

104



FIND HRS2
WHILETRUE HRS2 VALID = UNKNOWN THEN

RESET TESTHRS2
FIND TESTHRS2

END
HRS2 VALID = TRUE;

RULE COLUMNINTEGRITY HRS2
IF

HRS2 > 0.0 AND
HRS2 <= 72.0 AND
TOTHRS >= (HRS1 + HRS2 + TEMPHRS3)

THEN
TEST HRS2 = YES
HRS2 VALID = TRUE
TOTAL = ((TOTAL) + (HRS2))

ELSE
TEST HRS2 YES
SUBTOTAL = (TOTHRS - HRS1)

DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO

{SUBTOTAL}"
RESET HRS2
FIND HRS2;

RULE MISSION 3 POSITION 1
IF

CHECK = YES OR
SKIP = YES

THEN
MSN31_VALID = NOTNEEDED

ELSE
RESET MSN3 1
FIND MSN3 f
RESET SKIP AGAIN
FIND SKIP AGAIN
WHILETRUE-MSN31 VALID UNKNOWN THEN

RESET TEST MSN31
FIND TEST MSN31

END
MSN31_VALID = TRUE;

RULE COLUMN INTEGRITY MISSION31
IF

MSN3 1 >= I OR
MSN3 1 = UNKNOWN OR
MSN3 1 = (BLANK) AND
MSN3 1 <= 5 OR

MSN3 1 = UNKNOWN OR
MSN3 1 = (BLANK)

THEN
TESTMSN31 = YES

105



MSN31 VALID = TRUE
ELSE

TEST MSN31 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 5."
RESET MSN3_1
FIND MSN31;

RULE MISSION_3_POSITION_2
IF

CHECK = YES OR
SKIP = YES OR
SKIPAGAIN = YES

THEN
MSN32_VALID = NOTNEEDED;

RULE TESTMISSION33_CODEVALID
IF

CHECK = YES OR
SKIP = YES OR
SKIPAGAIN = YES

THEN
MSN33_VALID = NOT NEEDED

ELSE
RESET MSN3_3
FIND MSN3_3
WHILETRUE MSN33 VALID = UNKNOWN THEN

RESET TEST MSN33
FIND TEST MSN33

END
MSN33 VALID = TRUE
DISPLAY "{MSN3 1}{MSN3_2}{MSN3_3}

PRESS ANY KEY TO CONTINUE-";

RULE TESTMISSION33_CODEVALID
IF

MSN3 3 >= 0 AND
MSN3_3 <= 9

THEN
TEST MSN33 = YES
MSN33_VALID = TRUE

ELSE
TEST MSN33 = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 0 TO 9."
RESET MSN3_3
FIND MSN3_3;

RULE HRS_3_VALID
IF

CHECK = YES OR
SKIP = YES OR
SKIPAGAIN = YES

106



THEN
HRS3_VALID = NOTNEEDED

ELSE
RESET HRS3
FIND HRS3
WHILETRUE HRS3_VALID = UNKNOWN THEN

RESET TEST HRS3
FIND TESTHRS3

END
HRS3_VALID = TRUE;

RULE COLUMN INTEGRITYBRS3
IF

HRS3 > 0.0 AND
HRS3 <= 72.0 AND
TOTHRS >= (HRS1 + HRS2 + HRS3)

THEN
TEST HRS3 = YES
HRS3 VALID = TRUE
TOTAL = ((TOTAL) + (HRS3))

ELSE
TEST HRS3 = YES
SUBTOTAL (TOTHRS - (HRS1 + HRS2))
DISPLAY " YOU MUST ENTER A NUMBER FROM 00.1 TO
{SUBTOTAL}"
RESET HRS3
FIND HRS3;

RULE TOTAL FLIGHTSVALID
IF

EXCD = X
THEN

TOTFLTVALID = NOTNEEDED
ELSE

RESET TOTFLT
FIND TOTFLT
WHILETRUE TOTFLT VALID = UNKNOWN THEN

RESET TEST TOTFLT
FIND TESTTOTFLT

END
TOTFLTVALID = TRUE;

RULE UPDATETOTALFLIGHTSVALID
IF

EXCD = X AND
FIELDTOUPDATE = TOTALFLIGHTS

THEN
UPDATE TOTFLT VALID = NOT NEEDED
DISPLAY " YOU ARE NOT ABLE TO ENTER TOTAL FLIGHTS FOR
{DOCNUM UPDATE} BECAUSE THE EXCEPTION CODE IS CURRENTLY
{EXCD}

107



PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUM UPDATE = DOCNUM, FLIGHT, TOTFLT
RESET TOTFLT
FIND TOTFLT
WHILETRUE UPDATE TOTFLT VALID = UNKNOWN THEN

RESET TEST TOTFLT
FIND TEST TOTFLT

END
PUT FLIGHT
CLOSE FLIGHT
UPDATETOTFLTVALID = TRUE;

RULE COLUMNINTEGRITYTOTFLT
IF

TOTFLT >= 1 AND
TOTFLT <= 99

THEN
TEST TOTFLT = YES
TOTFLT VALID = TRUE
UPDATETOTFLTVALID = TRUE

ELSE
TEST TOTFLT = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 99"
RESET TOTFLT
FIND TOTFLT;

RULE OPSCODEVALID
IF

EXCD = X
THEN

OPSVALID = NOTNEEDED
ELSE

WHILETRUE OPS VALID = UNKNOWN THEN
RESET TEST OPS
FIND TESTOPS

END
OPSVALID = TRUE;

RULE UPDATESHIPFIELDOPSCODEVALID
IF

EXCD = X AND
FIELDTOUPDATE = SHIPFIELDOPERATIONSCODE

THEN
UPDATE OPS VALID = NOT NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER SHIP/FIELD

OPERATIONS CODE FOR {DOCNUM UPDATE}
BECAUSE THE EXCEPTION CODE IS CURRENTLY {EXCD}

108



PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUMUPDATE = DOCNUM, FLIGHT, OPS
RESET OPS
FIND OPS
WHILETRUE UPDATE OPS VALID = UNKNOWN THEN

RESET TEST OPS
FIND TESTOPS

END
PUT FLIGHT
CLOSE FLIGHT
UPDATEOPSVALID = TRUE;

RULE COLUMN INTEGRITY OPSCODE
IF

OPS = A OR
OPS = B OR
OPS = 1 OR
OPS = 2

THEN
TEST OPS = YES
OPS VALID = TRUE
UPDATEOPSVALID = TRUE

ELSE
TEST OPS = YES
DISPLAY " YOU NEED TO ENTER AN A, B, 1, OR 2."
RESET OPS
FIND OPS;

RULE CATSJATOVALID
IF

CATSJATO = N OR
EXCD = X

THEN
CJVALID = NOT NEEDED

ELSE
RESET CJ
FIND CJ
WHILETRUE CJ VALID = UNKNOWN THEN

RESET TEST CJ
FIND TESTCJ

END
CJVALID = TRUE;

RULE UPDATECATAPULTJATOLAUNCHESVALID
IF

CATSJATO = N OR
EXCD = X AND
FIELDTOUPDATE = CATAPULTJATOLAUNCHES

109



THEN
UPDATE CJ VALID = NOT NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER CATAPULT/JATO

LAUNCHES FOR (DOCNUM UPDATE} BECAUSE EITHER
1. YOUR ORGANIZATION DOES NOT DOCUMENT CATAPULT/JATO

LAUNCHES
2. THE EXCEPTION CODE IS CURRENTLY X

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUMUPDATE = DOCNUM, FLIGHT, CJ
RESET CJ
FIND CJ
WHILETRUE UPDATE CJ VALID = UNKNOWN THEN

RESET TEST CJ
FIND TESTCJ

END
PUT FLIGHT
CLOSE FLIGHT
UPDATECJVALID = TRUE;

RULE COLUMN INTEGRITYCJ
IF

CJ >= 1 OR
CJ = UNKNOWN OR
CJ = (BLANK) AND
CJ <= 99 OR
CJ = UNKNOWN OR
CJ = (BLANK)

THEN
TEST CJ = YES
CJ VALID = TRUE
UPDATECJVALID = TRUE

ELSE
TEST CJ = YES
DISPLAY " YOU MUST ENTER A NUMBER FROM 1 TO 99 OR

<SPACE> FOR NONE"
RESET CJ
FIND CJ;

RULE AIRLIFTMISSIONNUMBER VALID
IF

AIRLIFT = N OR
EXCD = X

THEN
AIRLIFTVALID = NOTNEEDED

ELSE
RESET MISNUM
FIND MISNUM
AIRLIFT VALID = TRUE;

110



RULE UPDATEAIRLIFTMISSIONNUMBERVALID
IF

AIRLIFT = N OR
EXCD = X AND
FIELDTOUPDATE = AIRLIFTMISSIONNUMBER

THEN
UPDATE AIRLIFT VALID = NOT NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER AIRLIFT MISSION

NUMBERS FOR {DOCNUM UPDATE} BECAUSE EITHER
2. YOUR ORGANIZATION DOES NOT DOCUMENT AIRLIFT

MISSION NUMBERS
2. THE EXCEPTION CODE IS CURRENTLY X

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUMUPDATE = DOCNUM, FLIGHT, MISNUM
RESET MISNUM
FIND MISNUM
PUT FLIGHT
CLOSE FLIGHT
UPDATEAIRLIFTVALID = TRUE;

RULE NUMHOISTVALID
IF

NUMHOIST VALID = UNKNOWN AND
EXCD = X

THEN
NUMHOISTVALID = NOTNEEDED

ELSE
WHILETRUE NUMHOIST VALID = UNKNOWN THEN

RESET TEST NUMHOIST
FIND TESTNUMHOIST

END
NUMHOISTVALID = TRUE;

RULE UPDATENUMHOISTSVALID
IF

EXCD = X AND
FIELDTOUPDATE = NUMBEROFHOISTS

THEN
UPDATE NUMHOISTS VALID = NOT NEEDED
DISPLAY "YOU ARE NOT ABLE TO ENTER NUMBER OF HOISTS FOR

{DOCNUM UPDATE} BECAUSE THE EXCEPTION CODE IS
CURRENTLY {EXCD}

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
GET DOCNUM UPDATE = DOCNUM, FLIGHT, NUMHOISTS
RESET NUMHOISTS

111



FIND NUMHOISTS
WHILETRUE UPDATE NUMHOISTSVALID = UNKNOWN THEN

RESET TEST NUMHOIST
FIND TEST NUMHOIST

END
PUT FLIGHT
CLOSE FLIGHT
UPDATENUMHOISTSVALID = TRUE;

RULE COLUMN INTEGRITY NUMNOIST
IF

NUMHOISTS >= 1 OR
NUMHOISTS = UNKNOWN OR
NUMHOISTS = (BLANK) AND
NUMHOISTS <= 99 OR
NUMHOISTS = UNKNOWN OR
NUMHOISTS = (BLANK)

THEN
TEST NUMHOIST = YES
NUMHOIST VALID = TRUE
UPDATENUMHOISTSVALID = TRUE

ELSE
TEST NUMHOIST = YES
DISPLAY " YOU NEED TO ENTER A NUMBER FROM 1 TO 99, OR ?
FOR NONE."
RESET NUMHOISTS
FIND NUMHOISTS;

RULE UPDATEENGINEHOURSVALID
IF

EXCD = X AND
FIELDTOUPDATE = ENGINEHOURS

THEN
UPDATE ENGINE HOURS VALID = NOT NEEDED
DISPLAY " YOU-ARE NOT ABLE TO ENTER ENGINE HOURS FOR

{DOCNUM UPDATE} BECAUSE THE EXCEPTION CODE IS
CURRENTLY {EXCD}

PRESS ANY KEY TO CONTINUE-"
CLS

ELSE
UPDATE ENGINE HOURS VALID = NEEDED
GET DOCNUM UPDATE =--DOCNUM, FLIGHT, ALL
TOTAL = (HRS1 + HRS2 + HRS3)
CLOSE FLIGHT
RESET ENGINE NUMBER
MENU ENGINENUMBER, DOCNUMUPDATE = DOCNUM, FLTENG,
ENGNUM
FIND ENGINE NUMBER
MRESET ENGINE NUMBER

112



CLOSE FLTENG
GET DOCNUM UPDATE = DOCNUM AND ENGINENUMBER = ENGNUM,
FLTENG, ENGHRS
RESET UPDATE ENGHRS
FIND UPDATE ENGHRS
ENGHRS = (UPDATEENGHRS)
RESET ENGHRS VALID
RESET ENGHRS LOOP
FIND ENGHRSLOOP
PUT FLTENG
CLS
CLOSE FLTENG
FIELDTOUPDATE = DONE;

RULE COLUMNINTEGRITY ENGINE HOURS
IF

ENGHRS > 0 AND
ENGHRS <= (TOTAL)

THEN
TEST ENGHRS = YES
ENGHRSVALID = TRUE

ELSE
TEST ENGHRS = YES
DISPLAY " YOU MUST ENTER ENGINE HOURS BETWEEN 00.1 AND
{4TOTAL)."
RESET ENGHRS
FIND ENGHRS;

!*********** ENTITY CONSTRAINT RULES ***********

RULE ENTITYINTEGRITYDOCNUMMISSING
IF

DOCNUMNEW = UNKNOWN OR
DOCNUMNEW = (BLANK)

THEN
loop to get user to enter a document number

WHILETRUE DOCNUMNEW = UNKNOWN OR DOCNUMNEW = (BLANK)
THEN

DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A DOCUMENT NUMBER."
RESET DOCNUM NEW
FIND DOCNUM NEW

END
DOCNUMNOTMISSING = TRUE

ELSE
DOCNUMNOTMISSING = TRUE;

RULE ENTITYINTEGRITYDOCNUM DUPLICATE
IF

DOCNUM NEW <> UNKNOWN OR
DOCNUMNEW <> (BLANK)

113



THEN
GET DOCNUM NEW = DOCNUM, FLIGHT, DOCNUM
WHILETRUE DOCNUM = (DOCNUMNEW) THEN

CLOSE FLIGHT
DISPLAY " THERE IS ALREADY A DOCUMENT NUMBER
{DOCNUM NEW} THAT EXISTS WITHIN THE DATABASE."
RESET DOCNUM NEW

got another document number
FIND DOCNUM NEW
RESET DOCNUM NOT MISSING

I once again must verify that document number is not a n-ll
value

FIND DOCNUM NOT MISSING
GET DOCNUMNEW = DOCNUM, FLIGHT, DOCNUM

END
DOCNUMDUPLICATE = FALSE;

RULE ENTITY INTEGRITY UPDATE SIDENUM MISSING
IF

FIELD TO UPDATE = SIDE NUMBER AND
SIDENUM UPDATE = UNKNOWN OR
SIDENUMUPDATE = (BLANK)

THEN
loop to get user to enter a aircraft side number

WHILETRUE SIDENUM UPDATE = UNKNOWN OR SIDENUM UPDATE =
(BLANK) THEN

DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A AIRCRAFT SIDE NUMBER."
RESET SIDENUM UPDATE
FIND SIDENUMUPDATE

END
SIDENUM UPDATE NOTMISSING = TRUE

ELSE
SIDENUMUPDATENOTMISSING = TRUE;

RULE ENTITY CONSTRAINT SIDINUM MISSING
IF WHICHTASK = APPEND RECORD AND

SIDENUM NEW = UNKNOWN OR
SIDENUM NEW = (BLANK)

THEN
! loop to get user to enter a aircraft side number

WHILETRUE SIDENUMNEW = UNKNOWN OR SIDENUMNEW =
(BLANK) THEN

DISPLAY " YOU WILL NOT BE ABLE TO PROCEED UNLESS
YOU ENTER A AIRCRAFT SIDE NUMBER."
RESET SIDENUM NEW
FIND SIDENUMNEW

END
SIDENUMNOTMISSING = TRUE

ELSE
SIDENUM NOT MISSING = TRUE;

114



!*********** REFERENTIAL CONSTRAINT RULES *

RULE REFERENTIALINTEGRITYSIDEN-_ EXISTS
IF

WHICHTASK = APPEND RECORD AND
SIDENUM NEW <> UNKNOWN OR
SIDENUMNEW <> (BLANK)

THEN
GET SIDENUM NEW = SIDE, AIRCRAFT, SIDE

! loop till side number matches an aircraft in organization
WHILETRUE SIDE = UNKNOWN THEN

CLOSE AIRCRAFT
DISPLAY " NO AIRCRAFT EXISTS IN THE ORGANIZATION
WITH THE SIDE NUMBER {SIDENUMNEW}."
RESET SIDENUMNEW

! get another side number
FIND SIDENUM NEW
RESET SIDENUM NOT MISSING

! once again must verify that side number is not a nu.Ll
! value

FIND SIDENUM NOT MISSING
GET SIDENUMNEW = SIDE, AIRCRAFT, SIDE

END
SIDENUMEXISTS = TRUE
SIDENUM = (SIDE);

RULE REFERENTIALINTEGRITYUPDATESIDENUM EXISTS
IF

FIELD TO UPDATE = SIDE NUMBER AND
SIDENUM UPDATE <> UNKNOWN OR
SIDENUMUPDATE <> (BLANK)

THEN
GET SIDENUM UPDATE = SIDE, AIRCRAFT, SIDE

! loop till side number matches an aircraft in organization
WHILETRUE SIDE = UNKNOWN THEN

CLOSE AIRCRAFT
DISPLAY " NO AIRCRAFT EXISTS IN THE ORGANIZATION
WITH THE SIDE NUMBER {SIDENUMUPDATE}."
RESET SIDENUM UPDATE

! get another side number
FIND SIDENUM UPDATE
RESET SIDENUM UPDATENOTMISSING

! once again must verify that side number is not a null
! value

FIND SIDENUM UPDATE NOT MISSING
GET SIDENUMUPDATE = SIDE, AIRCRAFT, SIDE

END
SIDENUM UPDATE EXISTS = TRUE
SIDENUM-= (SIDE)
CLOSE AIRCRAFT;

115



RULE ENGINEHOURSVALID
IF

EXCD = X AND
ENGHRS VALID = UNKNOWN AND
FIELD TOUPDATE <> ENGINEHOURS

THEN
ENGHRSVALID = NOTNEEDED

ELSE
Y= 0
ENGINE = (ENGINES - 1)
WHILETRUE Y <= (ENGINE) THEN

RESET ENGHRS VALID
ENGNUM = (Y +1)
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS LOOP
FIND ENGHRSLOOP
y = (Y +1)
APPEND FLTENG
CLS

END
ENGHRSVALID = TRUE;

RULE ENGINEHOURSLOOP
IF

ENGHRSLOOP = UNKNOWN
THEN

WHILETRUE ENGHRS VALID = UNKNOWN THEN
RESET TESTENGHRS
FIND TESTENGHRS

END
ENGHRSLOOP = TRUE;

RULE UPDATEENGINEHOURSVALID_1
IF

EXCD = X AND
UPDATE ENGHRS VALID = UNKNOWN AND
WHICHTASK = UPDATE RECORD AND
FIELDTOUPDATE <> ENGINEHOURS

THEN
UPDATE ENGHRSVALID = NOTNEEDED;

RULE UPDATEENGINEHOURSVALID_2
IF

EXCD <> X AND
UPDATE ENGHRS VALID = UNKNOWN AND
WHICHTASK = UPDATE RECORD AND

FIELDTOUPDATE <> ENGINEHOURS
THEN

y= 0
ENGINE = (ENGINES - 1)

116



WHILETRUE Y <= (ENGINE) THEN
RESET ENGHRS VALID
ENGNUM = (Y + 1)
RESET ENGHRS
FIND ENGHRS
RESET ENGHRS LOOP
FIND ENGHRS LOOP
Y = (Y +1)
APPEND FLTENG
CLS

END
UPDATEENGHRS VALID = TRUE;

RULE UPDATEENGINEHOURSLOOP
IF

UPDATEENGHRSLOOP = UNKNOWN
THEN

WHILETRUE UPDATE ENGHRS VALID = UNKNOWN THEN
RESET TEST ENGHRS
FIND TEST ENGHRS

END
UPDATEENGHRSLOOP = TRUE;

!*********** USER DEFINED CONSTRAINT RULES ***********

RULE MISSIONPOSITION_12A
IF

MSNI 1 = 1 AND
EXCD <> X AND
MSN12_VALID = UNKNOWN

THEN
WHILETRUE MSN12 VALID = UNKNOWN THEN

RESET CK MSN12A
FIND CK MSN12A
RESET REPEAT REQUEST2A
FIND REPEATREQUEST2A

END
MSN12_VALID = TRUE;

RULE USER DEFINED MISSION12ACODE
IF

MSN1 2 = A OR
MSN1 2 = B OR
MSN1 2 = C OR
MSN1 2 = D OR
MSN1 2 = E OR
MSN1 2 = F OR
MSN1 2 = G OR
MSN1 2 = H OR
MSN1 2 = I OR
MSN1 2 = N OR

117



MSN1 2 0 OR
MSN1 2 = P OR
MSNI 2 = R AND
MSNI 1 = 1 AND
EXCD <> X

THEN
CK MSN12A = YES
MSN12VALID = TRUE;

RULE USER DEFINED MISSION12AA CODE
IF

MSN1 2 <> A OR
MSN1 2 <> B OR
MSN1 2 <> C OR
MSNI 2 <> D OR
MSN1 2 <> E OR
MSN1 2 <> F OR
MSN1 2 <> G OR
MSN1 2 <> H OR
MSN1 2 <> I OR
MSN1 2 <> N OR
MSN1 2 <> 0 OR
MSN1 2 <> P OR
MSN1 2 <> R AND
MSN1 1 = 1 AND
EXCD <> X

THEN
CKMSN12A = YES;

RULE REPEATREQUEST_12A
IF

MSN12_VALID <> UNKNOWN
THEN

REPEATREQUEST2A = NO
ELSE

CK MSN12A = YES
REPEATREQUEST2A = YES
CLS
DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P.

PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN1_2
FIND MSN1_2;

RULE MISSIONPOSITION_12B
IF

MSNI 1 = 2 AND
EXCD <> X AND
MSN12_VALID = UNKNOWN

THEN
WHILETRUE MSN12_VALID = UNKNOWN THEN

118



RESET CK-MSN12B
FIND CK-MSN12B
RESET REPEATREQUEST2B
FIND REPEATREQUEST2B

END
MSN12_VALID = TRUE;

RULE USER DEFINEDMISSION12B CODE
IF

MSNI 2 = J OR
MSN1 2 = K OR
MSN1 2 = L OR
MSN1 2 = M OR
MSN1 2 = N OR
MSN1 2 = 0 OR
MSN1 2 = P OR
MSNI 2 = Q OR
MSN1 2 = R AND
MSN1 1 = 2 AND
EXCD <> X

THEN
CK MSN12B =YES

MSK12_VALID = TRUE;

RULE USERDEFINEDMISSION12DBCODE
IF

MSN1 2 <> J OR
MSN1 2 <> K OR
MSN1 2 <> L OR
MSNI 2 <> M OR
MSN1 2 <> N OR
MSN1 2 <> 0 OR
MSN1 2 <> P OR
MSN1 2 <> Q OR
MSN1 2 <> R AND
MSN1 1 = 2 AND
EXCD <> X

THEN
CKMSN12B =YES;

RULE REPEATREQUEST_12B
IF

MSN12_VALID <> UNKNOWN
THEN

REPEATREQUEST2B = NO
ELSE

REPEATREQUEST2B = YES
CLS
DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R.

PRESS ENTER TO CONTINUE. -

CLS

119



RESET MSN1_2
FIND MSN1_2;

RULE MISSIONPOSITION_12C
IF

MSN1 1 >= 3 AND
EXCD <> X AND
MSN12_VALID = UNKNOWN

THEN
WHILETRUE MSN12_VALID =UNKNOWN THEN

RESET CK-MSN12C
FIND CK-MSN12C
RESET REPEATREQUEST2C O
FIND REPEATREQUEST2C

END
MSN12_VALID = TRUE;

RULE USER DEFINEDMZSSION12CCODE
IF

MSN1 2 = N OR
MSN1-2 =0 OR
MSN1-2 = S OR
MSN1-2 = T OR
MSN1-2 = U OR
MSN1-2 = V OR
MSN1-2 = W OR
MSN1-2 =X OR
MSN1-2 = Y OR
MSN1-2 =Z AND
MSN1-1 >= 3 AND
EXCD <> X

THEN
CK-MSN12C = YES
MSN12_VALID = TRUE;

RULE USER DEFINED HISSION12CCCODE
IF

MSN1 2 <> N OR
MSN1-2 <> 0 OR
MSNI12 <> S OR
MSN1-2 <> T OR
MSN1-2 <> U OR
MSN1-2 <> V OR
MSN1-2 <> W OR
MSN1-2 <> X OR
MSN1-2 <> Y OR
MSN1-2 <> Z AND
MSN1 1 >= 3 AND
EXCD <> X

THEN
CKMSN12C = YES;

120



RULE REPEATREQUEST_12C
IF

MSN12_VALID <> UNKNOWN
THEN

REPEATREQUEST2C = NO
ELSE

REPEATREQUEST2C = YES
CLS
DISPLAY " POSITION 2 MUST BE N, 0, OR S-Z.

PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN1_2
FIND MSN12;

RULE MISSIONPOSITION_12D
IF

EXCD = X AND
MSN12_VALID = UNKNOWN

THEN
WHILETRUE MSN12 VALID = UNKNOWN THEN

RESET CK MSN12D
FIND CKMSN12D
RESET REPEAT REQUEST2D
FIND REPEAT_REQUEST2D

END
MSN12_VALID = TRUE;

RULE USER DEFINED MISSION12DCODE
IF

MSN12 = N OR
MSN1 2 = 0 AND
EXCD = X

THEN
CK MSN12D = YES
MSN12_VALID = TRUE;

RULE TESTMISSION12DDCODEVALID
IF

MSN1 2 <> N AND
EXCD = X

THEN
CKMSN12D = YES;

RULE TESTMISSION12DDDCODEVALID
IF

MSNI 2 <> 0 AND
EXCD = X

THEN
CKMSN12D = YES;

RULE REPEATREQUEST_12D

121



IF
MSN12_VALID <> UNKNOWN

THEN
REPEATREQUEST2D = NO

ELSE
REPEATREQUEST2D = YES
CLS
DISPLAY " POSITION 2 MUST BE N, OR 0.

PRESS ENTER TO CONTINUE. -

CLS
RESET MSN1_2
FIND MSN1_2;

RULE MISSIONPOSITION_22A
IF

MSN2 1 =1 AND
MSN2fVALID = UNKNOWN

THEN
WHILETRUE MSN22-VALID =UNKNOWN THEN

RESET CK-MSN22A
FIND CK-MSN22A
RESET REPEAT REQUEST2A
FIND REPEATR EQUESTA

END
MSN22_VALID = TRUE;

RULE USERDEFINED HISSION22A CODE
IF

MSN2_2 = A OR
MSN2 2 = B OR
MSN2 2 = C OR
MSN2 2 = D OR
MSN2 2 = E OR
MSN2 2 = F OR
MSN2 2 = G OR
MSN2 2 = H- OR
MSN2 2 = I OR
MSN2 2 = N OR
MSN2 2 = 0 OR
MSN2 2 = P OR
MSN2 2 = R AND
MSN2 1 = 1 AND
EXCD-<> x

THEN
CI( MSN22A YES
MSR22_VALID = TRUE;

RULE USER DEFINED HISSION22AACODE
IF

MSN2 2 <> A OR
MSN2-2 <> B OR

122



MSN2 2 <> C OR
MSN2 2 <> D OR
MSN2 2 <> E OR
MSN2 2 <> F OR
MSN2 2 <> G OR
MSN2 2 <> H OR
MSN2 2 <> I OR
MSN2 2 <> N OR
MSN2 2 <> 0 OR
MSN2 2 <> P OR
MSN2 2 <> Q AND
MSN2 1 = 1 AND
EXCD <> X

THEN
CKMSN22A = YES;

RULE REPEATREQUEST_2A
IF

MSN22_VALID <> UNKNOWN
THEN

REPEATREQUEST22A = NO
ELSE

CK MSN22A = YES
REPEATREQUEST22A = YES
CLS
DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P.

PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN2_2
FIND MSN2.2;

RULE MISSIONPOSITION_22B
IF

MSN2 1 = 2 AND
EXCD <> X AND
MSN22_VALID = UNKNOWN

THEN
WHILETRUE MSN22 VALID = UNKNOWN THEN

RESET CK MSN22B
FIND CK MSN22B
RESET REPEAT REQUEST22B
FIND REPEAT_REQUEST22B

END
MSN22_VALID = TRUE;

RULE USER DEFINED _ISSION22BCODE
IF

MSN2 2 = J OR
MSN2 2 = K OR
MSN2 2 = L OR
MSN2 2 = M OR

123



MSN2 2 = N OR
MSN2 2 = 0 OR
MSN2 2 = P OR
MSN2 2 = Q OR
MSN2 2 = R AND
MSN2 1 = 2 AND
EXCD <> X

THEN
CK MSN22B = YES
MSN22_VALID = TRUE;

RULE USER DEFINED MISSION22BB CODE
IF

MSN2 2 <> J OR
MSN2-2 <> K OR
MSN2-2 <> L OR
MSN2 2 <> M OR
MSN2-2 <> N OR
MSN2-2 <> 0 OR
MSN2-2 <> P ORMSN2-2 <> 0 OR
MSN2-2 <> R AND
MSN2 1 = 2 AND
EXCD <> X

THEN
CKMSN22B = YES;

RULE REPEATREQUEST_22B
IF

MSN22_VALID <> UNKNOWN
THEN

REPEATREQUEST22B = NO
ELSE

REPEATREQUEST22B = YES
CLS
DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R.

PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN2_2
FIND MSN2_2;

RULE MISSIONPOSITION_22C
IF

MSN2 I >= 3 AND
EXCD <> X AND
MSN22_VALID = UNKNOWN

THEN
WHILETRUE MSN22 VALID = UNKNOWN THEN

RESET CK MSN22C
FIND CK MSN22C
RESET REPEATREQUEST22C

124



FIND REPEATREQUEST22C
END
MSN22_VALID = TRUE;

RULE USER_DEFINED MISSION22C.CODE
IF

MSN2 2 = N OR
MSN2-2 = 0 OR
MSN2 2 = S OR
MSN2-2 = T OR
MSN2-2 = U OR
MSN2-2 = V OR
MSN2-2 = W OR
MSN2-2 = X OR
MSN2-2 = Y OR
MSN2-2 = Z AND
MSN2 1 >= 3 AND
EXCD <> X

THEN
CK MSN22C = YES
MSN22_VALID = TRUE;

RULE USER DEFINED MISSION22CCCODE
IF

MSN2 2 <> N OR
MSN2 2 <> 0 OR
MSN2 2 <> S OR
MSN2 2 <> T OR
MSN2 2 <> U OR
MSN2 2 <> V OR
MSN2 2 <> W OR
MSN2 2 <> X OR
MSN2 2 <> Y OR
MSN2 2 <> Z AND
MSN2 1 >= 3 AND
EXCD <> X

THEN
CKMSN22C = YES;

RULE REPEATREQUEST_22C
IF

MSN22_VALID <> UNKNOWN
THEN

REPEATREQUEST22C = NO
ELSE

REPEAT REQUEST22C = YES
CLS
DISPLAY " POSITION 2 MUST BE N, 0, OR S-Z.

PRESS ENTER TO CONTINUE. ~"

CLS
RESET MSN2_2

125



FIND MSN2_2;

RULE MISSIONPOSITION_32A
IF

MSN3 1 = 1 AND
MSN32_VALID = UNKNOWN

THEN
WHILETRUE MSN32 VALID = UNKNOWN THEN

RESET CK MSN32A
FIND CK MSN32A
RESET REPEAT REQUEST32A
FIND REPEATREQUEST32A

END
MSN32_VALID = TRUE;

RULE USER DEFINED MISSION32A CODE
IF

MSN3 2 = A OR
MSN3 2 = B OR
MSN3 2 = C OR
MSN3 2 = D OR
MSN3 2 = E OR
MSN3 2 = F OR
MSN3 2 = G OR
MSN3 2 = H OR
MSN3 2 = I OR
MSN3 2 = N OR
MSN3 2 = 0 OR
MSN3 2 = P OR
MSN3 2 = R AND
MSN3 1 = 1 AND
EXCD <> X

THEN
CK MSN32A = YES
MSN32_VALID = TRUE;

RULE USER DEFINED MISSION32AA CODE
IF

MSN3 2 <> A OR
MSN3 2 <> B OR
MSN3 2 <> C OR
MSN3 2 <> D OR
MSN3 2 <> E OR
MSN3 2 <> F OR
MSN3 2 <> G OR
MSN3 2 <> H OR
MSN3 2 <> I OR
MSN3 2 <> N OR
MSN3 2 <> 0 OR
MSN3 2 <> P OR
MSN3 2 <> R AND

126



MSN3 1 = 1 AND
EXCD <> X

THEN
CKMSN32A = YES;

RULE REPEAT_REQUEST_3A
IF

MSN32_VALID <> UNKNOWN
THEN

REPEATREQUEST32A = NO
ELSE

CK MSN32A = YES
REPEATREQUEST32A = YES
CLS
DISPLAY " POSITION 2 MUST BE R, A-I, OR N-P.

PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN3_2
FIND MSN3_2;

RULE MISSIONPOSITION_3
IF

MSN3 1 = 2 AND
EXCD <> X AND
MSN32 VALID = UNKNOWN

THEN
WHILLTRUE MSN32 VALID = UNKNOWN THEN

RESET CK MSN32B
FIND CK MSN32B
RESET REPEAT REQUEST32B
FIND REPEAT_REQUEST32B

END
MSN32_VALID = TRUE;

RULE USER DEFINED MISSION32B CODE
IF

MSN3 2 = J OR
MSN3 2 = K OR
MSN3 2 = L OR
MSN3 2 = M OR
MSN3 2 = N OR
MSN3 2 = 0 OR
MSN3 2 = P OR
MSN3 2 = Q OR
MSN3 2 = R AND
MSN3 I = 2 AND
EXCD <> X

THEN
CK MSN32B = YES
MSN32_VALID = TRUE;

127



RUL ET USR DZFINED MISSION32BB CODE
IF

MSN3 2 <> J OR
MSN3 2 <> K OR
MSN3 2 <> L OR
MSN3 2 <> M OR
MSN3 2 <> N OR
MSN3 2 <> 0 OR
MSN3 2 <> P OR
MSN3 2 <> Q OR
MSN3 2 <> R AND
MSN3 1 = 2 AND
EXCD <> X

THEN
CKMSN32B = YES;

RULE REPEATREQUEST_32B
IF

MSN32_VALID <> UNKNOWN
THEN

REPEATREQUEST32B = NO
ELSE

REPEATREQUEST32B = YES
CLS
DISPLAY " POSITION 2 MUST BE IN THE RANGE OF J-R.

PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN3_2
FIND MSN3_2;

RULE MISSIONPOSITION_32C
IF

MSN3 1 >= 3 AND
EXCD <> X AND
MSN32_VALID = UNKNOWN

THEN
WHILETRUE MSN32 VALID UNKNOWN THEN

RESET CK MSN32C
FIND CKMSN32C
RESET REPEAT REQUEST32C
FIND REPEATREQUEST32C

END r
MSN32_VALID = TRUE;

RULE USERDZFINED MISSION32CCODZ
IF

MSN3 2 = N OR
MSN3 2 = 0 OR
MSN3 2 = S OR
MSN3 2 = T OR
MSN3 2 = U OR

128



MSN3 2 = V OR
MSN32 = W OR
MSN3 2 = X OR
MSN3 2 = Y OR
MSN3 2 = Z AND
MSN3 1 >= 3 AND
EXCD <> X

THEN
CKMSN32C = YES
MSN32_VALID = TRUE;

RULE USER DEFINED MISSION32CCCODE
IF

MSN3 2 <> N OR
MSN3 2 <> 0 OR
MSN3 2 <> S OR
MSN3 2 <> T OR
MSN3 2 <> U OR
MSN3 2 <> V OR
MSN3 2 <> W OR
MSN3 2 <> X OR
MSN3 2 <> Y OR
MSN3 2 <> Z AND
MSN3 1 >= 3 AND
EXCD <> X

THEN
CKMSN32C = YES;

RULE REPEATREQUEST_32C
IF

MSN32_VALID <> UNKNOWN
THEN

REPEATREQUEST32C = NO
ELSE

REPEATREQUEST32C = YES
CLS
DISPLAY " POSITION 2 MUST BE N, 0, OR S-Z.

PRESS ENTER TO CONTINUE. ~"
CLS
RESET MSN3_2
FIND MSN3_2;

ASK WHICHTASK: "CHOOSE A TASK TO PERFORM ON THE DATABASE.";
CHOICES WHICHTASK: APPEND RECORD, UPDATERECORD,
DELETE RECORD, DISPLAY RECORD, EXIT;
ASK DOCNUM NEW: " ENTER THE NEW DOCUMENT NUMBER.";
ASK SIDENUM NEW: " PLEASE INDICATE THE SIDE NUMBER OF THE
AIRCRAFT.";
ASK SIDENUM UPDATE: " PLEASE INDICATE THE NEW SIDE NUMBER.";

129



ASK EXCD: " ENTER AN EXCEPTION CODE OR <SPACE> FOR NONE.";
ASK MSN1 1: " ENTER A MISSION 1 CODE, HIT ENTER AFTER EACH
POSITION ENTRY.";
ASK MSN1 2: " ENTER A MISSION 1 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN1_1} ENTER SECOND
POSITION";
ASK MSN1 3: " ENTER A MISSION 1 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN1_11(MSN1_2} ENTER THIRD
POSITION";
ASK HRS1: " ENTER THE HOURS FLOWN ON MISSION 1.";
ASK MSN2 1: " ENTER A MISSION 2 CODE, HIT ENTER AFTER EACH
POSITION ENTRY";
ASK MSN2_2: " ENTER A MISSION 2 CODE, HIT ENTER AFTER EACH a
POSITION ENTRY {MSN2_1 ENTER SECOND
POSITION";
ASK MSN2 3: " ENTER A MISSION 2 CODE, HIT ENTER AFTER EACH 9
POSITION ENTRY {MSN2_11{MSN2_2) ENTER THIRD
POSITION";
ASK HRS2: " ENTER THE HOURS FLOWN ON MISSION 2.";
ASK MSN3 1: " ENTER A MISSION 3 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN3 11{MSN3_2}{MSN3 3)";
ASK MSN3 2: " ENTER A MISSION 3 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN311 ENTER SECOND
POSITION";
ASK MSN3 3: " ENTER A MISSION 3 CODE, HIT ENTER AFTER EACH
POSITION ENTRY {MSN3_1I}{MSN3_2} ENTER THIRD
POSITION";
ASK HRS3: " ENTER THE HOURS FLOWN ON MISSION 3.";
ASK TOTFLT: " ENTER THE TOTAL NUMBER OF FLIGHTS.";
ASK OPS: " ENTER THE SHIP/FIELD OPERATIONS CODE.";
ASK CJ: " ENTER THE NUMBER OF CATAPULT SHOTS OR JATO
LAUNCHES.";
ASK NUMHOISTS: " ENTER THE NUMBER OF AIRCRAFT HOISTS.";
ASK ENGHRS: " ENTER HOURS FOR ENGINE {ENGNUM}.";
ASK UPDATE ENGHRS: " ENTER HOURS FOR ENGINE
{ENGINE NUMBER).";
ASK DOCNUM VIEW: " WHICH NAVAL AIRCRAFT FLIGHT RECORD DO YOU
WANT TO VIEW.";
ASK DOCNUM DELETE: " WHICH NAVAL AIRCRAFT FLIGHT RECORD DO
YOU WANT TO DELETE.";
ASK DOCNUM UPDATE: " WHICH NAVAL AIRCRAFT FLIGHT RECORD DO
YOU WANT TO UPDATE.";
ASK FIELDTOUPDATE: " SELECT WHICH FIELD YOU WANT TO
UPDATE.";
CHOICES FIELDTOUPDATE: DOCUMENTNUMBER, SIDE-NUMBER,
EXCEPTION-CODE, MISSION CODE_1, MISSION 1 HOURS,
MISSIONCODE_2, MISSION_2_HOURS, MISSIONCODE_3,
MISSION-3 HOURS, TOTALFLIGHTS, SHIP FIELDOPERATIONSCODE,
CATAPULTJATOLAUNCHES, AIRLIFTMISSIONNUMBER,
NUMBER OF HOISTS, ENGINE HOURS, DONE;
ASK EXCD NEW: " ENTER AN EXCEPTION CODE OR <SPACE> FOR

130



NONE.";
ASK ENGINE NUMBER: " CHOOSE THE ENGINE NUMBER THAT YOU WANT
TO CHANGE THE HOURS FLOWN.";
ASK CONTINUE: " THIS ACTION WILL DELETE THE WHOLE FLIGHT
RECORD! DO YOU WANT TO CONTINUE?";
CHOICES CONTINUE: YES, NO;

I

131



LIST OF REFERENCES

1. Fernandez,E.B., Summers, R.C.,and Wood,C., Database
Security and Integrity, Addison-Wesly Publishing

Company Inc., 1981.

2. Codd,E.F., The Relational Model for Database
Management, Version 2, Addison-Wesly Publishing
Company Inc., 1990. I

3. Department of the Navy, Office of the Chief of
Naval Operations, OPNAVINST 3710.7N, Natops General
Flight and Operating Instructions, 10 April 1990.

4. Kroenke,D.M., and Dolan,K.A., Database Processing,
3rd ed., Science Research Associates Inc., Chicago,
Illinois, 1988.

5. Shafer,S.L., and Westney,R.E., "Six Steps To
Successful Expert Systems,"Cost Engineering,
v.30, p.17, June 1988.

6. Department of the Navy. Office of the Chief of Naval
Operations, OPNAVINST 4790.2E, The Naval Aviation
Maintenance Program, 1 January 1989.

132



BIBLIOGRPHY

Guida,G., and Tasso, C., Topics in Expert System Design,
Elsevier Science Publishers B.V., North Holland, 1989.

Kerschberg, L., Expert System Databases, The
Benjamin/Cummings Publishing Company, Menlo Park,
California, 1987.

Rolston, D.W., Principles of Artificial Intelligence and
Expert Systems Development, McGraw-Hill Inc., 1988.

Moose, A., Schussler, T., and Shafer, D., VP-Expert,
Paperback Software International, Berkeley, California,
1989.

Whitten, J.L., Bentley, L.D., and Ho, T.L., Systems Analysis
and Design Methods, Times Mirror/Mosby College
Publishing, St. Louis, Missouri, 1986.

133



INITIAL DISTRIBUTION LIST

NO. COPIES

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

V
3. Prof. Magdi N. Kamel, Code AS/KA 2

Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Hemant K. Bhargava, Code AS/BH 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Commanding Officer 1
Naval Sea Logistics Center
Code 612.2
5450 Carlisle Pike
P.O. Box 2060
Mechanicsburg, Pennsylvania 17055-0795

6. LT. George J. Salitsky, USN 2
117 School St.
Childs, Pennsylvania 18407

134


